
CS111 Computer Programming

Department of Computer Science
Wellesley College

Iteration:
while loops, for loops,

iteration tables
and nested loops

7-2

Review: Python for loop

nums = range(5)

Recall that a Python for loop performs the loop body for each
element of a sequence.

0
5
10
15
20

for num in nums:
 print num * 10

for n in nums:
 if (n % 2) == 0:
 print n

0
2
4

[0,1,2,3,4]

7-3

Accumulating a result
with a for loop

In[]: sumList([8,3,10,4,5])
Out[]: 30

E.g., How can we define a sumList function that
takes a list of numbers and returns a single
number that is their sum?

It’s common to use a for loop in conjunction
with one or more variables (“accumulators”) that
accumulate results from processing the elements.

sumSoFar

0

8 +

8

3 +

11

10 +

21

4 +

25

5 +

30 7-4

sumList in Python

def sumList(numbers):
 sumSoFar = 0
 for num in numbers:
 sumSoFar += num # or sumSoFar = sumSoFar + num
 return sumSoFar

initialize accumulator

update accumulator
return accumulator

for loop: concatAll

What should the accumulator do in this case?

Given a list of strings, returns the string that results
from concatenating them all together
def concatAll(elts):

beatles = ['John','Paul','George','Ringo']
concatAll(beatles)

concatAll(['To','be','or','not','to','be'])

concatAll([])

Returns

'Tobeornottobe'

'JohnPaulGeorgeRingo'

''

7-5

4
2
1
0
2

for loop: countOf

Given a value val and a list elts, returns the
number of times that val appears in elts
def countOf(val, elts):

Returns

countOf('the', sentence.split())
countOf('that', sentence.split())
countOf('mouse', sentence.split())
countOf('bunny', sentence.split())
countOf(3, [1,2,3,4,5,4,3,2,1])

7-6

sentence = 'the cat that ate the mouse liked
 the dog that played with the ball’

sentence.split() ! [’the’,’cat’,’that’,’ate’,… ‘ball’]

7-7

What is Iteration?

How does it stop repeating?
When some stopping condition is reached
(or, alternatively, it continues while some continuation
condition is true).

In most programming languages, iteration is expressed via
looping constructs.

Python has while and for loops.

Repeated execution of a set of statements

while Loops

while loops are a fundamental mechanism
for expressing iteration

while continuation_condition :
 statement1
 statement2
 …
 statementN

body of loop =
actions to perform if the
continuation condition is
true

keyword
indicating while
loop

a boolean expression
denoting whether to iterate
through the body of the
loop one more time.

7-8

while Loop Example: printHalves

def printHalves(n):
 while n > 0:
 print(n)
 n = n/2

In[2]: printHalves(22)

7-9

What is printed here?

 Your Turn: What’s the output?

def printHalves2(n):
 while n > 0:
 print(n)
 n = n/2

7-10

Why don’t computer scientists ever get out
of the shower?

Because the shampoo bottle says:
•  Lather
•  Rinse
•  Repeat

7-11

Accumulating a result with a while loop

def sumHalves(n):
 sumSoFar = 0
 while n > 0:
 sumSoFar = sumSoFar + n # or sumSoFar += n
 n = n/2
 return sumSoFar

In[3]: sumHalves(22)
Out[3]: 41 # 22 + 11 + 5 + 2 + 1

Define a sumHalves function that takes an nonnegative integer and returns the
sum of the values printed by printHalves.

It is common to use a while loop in conjunction with one or more variables
(“accumulators”) that accumulate results from processing the elements.

initialize accumulator

update accumulator

return accumulator
7-12

Iteration Tables
An iteration is characterized by a collection of state variables that
are updated during each step of the process. E.g the state variables
of sumHalves are n and sumSoFar.

The execution of an iteration can be summarized by an iteration table,
where columns are labeled by state variables and each row represents
the values of the state variables at one point in time.

Example: iteration table for sumHalves(22):

step n sumSoFar

0 22 0

1 11 22

2 5 33

3 2 38

4 1 40

5 0 41

step is not a state
variable but a label
that allows us to
distinguish rows

7-13

Iteration Rules

•  next sumSoFar is current sumSoFar plus current n.
•  next n is current n divided by 2.

An iteration is governed by
•  initializing the state variables to appropriate values;
•  specifying iteration rules for how the next row of the iteration table is determined from

the previous one;
•  specifying the continuation condition (alternatively, stopping condition)

Iteration rules for sumHalves:

step n sumSoFar

0 22 0

1 11 22

2 5 33

3 2 38

4 1 40

5 0 41

initial values of state variables

continue while n > 0 (stop when n <= 0)

7-14

def sumHalvesPrint(n):
 sumSoFar = 0
 while n > 0:
 print 'n:', n, '| sumSoFar:', sumSoFar
 sumSoFar = sumSoFar + n # or sumSoFar += n
 n = n/2
 print 'n:', n, '| sumSoFar:', sumSoFar
 return sumSoFar

Printing the iteration table in a loop
By adding a print statement to the top of a loop and after the loop, you can print
each row of the iteration table.

7-15

In[4]: sumHalvesPrint(22)
n: 22 | sumSoFar: 0
n: 11 | sumSoFar: 22
n: 5 | sumSoFar: 33
n: 2 | sumSoFar: 38
n: 1 | sumSoFar: 40
n: 0 | sumSoFar: 41
Out[17]: 41

Your Turn: What is the result?

def sumHalves2(n):
 sumSoFar = 0
 while n > 0:
 n = n/2
 sumSoFar = sumSoFar + n
 return sumSoFar

step n sumSoFar

0 22 0

1 11

2 5

3 2

4 1

5 0

7-16

Your Turn: What is the result?

def sumHalves3(n):
 sumSoFar = 0
 while n > 0:
 sumSoFar = sumSoFar + n # or sumSoFar += n
 n = n/2
 return sumSoFar

7-17

Your turn: sumBetween with while loop

In[6]: sumBetween(4,8)
Out[6]: 30 # 4 + 5 + 6 + 7 + 8

7-18

step lo hi sumSoFar

0 4 8 0

1 5 8 4

2 6 8 9

3 7 8 15

4 8 8 22

5 9 8 30

Returns the sum of the integers
from lo up to hi (inclusive).
Assume lo and hi are integers.
sumBetween(4,8) returns 30
sumBetween(4,4) returns 4
sumBetween(4,3) returns 0
def sumBetween(lo, hi):

While loops and user input
name = raw_input('Please enter your name: ')
while (name.lower() != 'quit'):

 print 'Hi,', name
 name = raw_input('Please enter your name: ')

print('Goodbye')
Please enter your name: Ted
Hi, Ted
Please enter your name: Marshall
Hi, Marshall
Please enter your name: Lily
Hi, Lily
Please enter your name: quit
Goodbye

7-19

A while loop you may have encountered:
password = raw_input(’Password: ')
while not isValid(password): # assuming isValid is written

 print ’Sorry, invalid password.’
 name = raw_input(’Password: ')

print(’Your password has been successfully updated.')

 for loops are while loops in disguise!

If Python did not have a for loop, the above for loop
could be automatically translated to the while loop below
def sumListWhile(nums):
 sumSoFar = 0
 index = 0
 while index < len(nums):
 n = nums[index]
 sumSoFar += n # or sumSoFar = sumSoFar + n
 index += 1 # or index = index + 1
 return sumSoFar

Sums the integers between lo and
sumList([17,8,5,12]) returns 42
sumList(range(1,11)) returns 55
def sumListFor(nums):
 sumSoFar = 0
 for n in nums:
 sumSoFar += n # or sumSoFar = sumSoFar + n
 return sumSoFar

7-20

Returning early from a loop

In a function, return can be used to exit the loop early (e.g.,
before it visits all the elements in a list).

def isElementOf(val, elts):
 for e in elts:
 if e == val:
 return True # return (and exit the function)
 # as soon as val is encountered
 return False # only get here if val is not in elts

In [1]: sentence = 'the cat that ate the mouse liked
 the dog that played with the ball'

In [2]: isElementOf('cat', sentence.split())
Out[2]: True # returns as soon as 'cat' is encountered

In [3]: isElementOf('bunny', sentence.split())
Out[3]: False

7-21

Your turn

def containsDigit(string):

True
True
True
False
False

containsDigit('The answer is 42')
containsDigit('pi is 3.14159...')
containsDigit('76 trombones')
containsDigit('the cat ate the mouse')
containsDigit('one two three')

Returns

7-22

7-23

The break command is used to exit from the innermost loop in
which it is used (can be used within functions too)

x = 256
total = 0
while x > 0:
 if total > 500:
 break # exit the loop
 total += x
 x = x/2

Terminating a loop early: break

Your turn: areAllPositive
Given a list of numbers, check if all the elements
in the list are positive
areAllPositive([17, 5, 42, 16, 31]) returns True
areAllPositive([17, 5, -42, 16, 31]) returns False
areAllPositive([-17, 5, -42, -16, 31]) returns False
areAllPositive([]) returns True
def areAllPositive(listOfNums):

7-24

Your turn: indexOf

Given a value val and a list elts, returns
the first index in elts at which val appears.
If val does not appear in elts, returns -1.
indexOf(8, [8,3,6,7,2,4]) returns 0
indexOf(7, [8,3,6,7,2,4]) returns 3
indexOf(5, [8,3,6,7,2,4]) returns -1
def indexOf(val, elts):

7-25

Loop Design: longestConsonantSubstring

7-26

Given a string, returns the longest substring of
consecutive consonants. If more than one such
substring has the same length, returns the first
to appear in the string.
longestConsonantSubstring('strong') returns 'str'
longestConsonantSubstring('strengths') returns 'ngths'
longestConsonantSubstring('lightning') returns 'ghtn'
longestConsonantSubstring('Program') returns 'Pr'
longestConsonantSubstring('adobe') returns 'd’
def longestConsonantSubstring(s):
 # This is hard! Draw iteration tables first!
 # What state variables do you need?

(Extra practice for later)

Nested Loops
We can have one loop nested in the body of another loop.

0*2 = 0
0*5 = 0
1*2 = 2
1*5 = 5
2*2 = 4
2*5 = 10
3*2 = 6
3*5 = 15

7-27

An example with lists of numbers:

listA = [0, 1, 2, 3]
listB = [2, 5]

for A in listA:
 for B in listB:
 print(str(A) + ‘*’ + str(B) + ‘ = ’ + str(A*B))

Nested Loops
An example with strings:

for letter in 'cs':
 for letter2 in 'rocks':
 print letter + letter2

cr
co
cc
ck
cs
sr
so
sc
sk
ss

7-28

Nested Loops
In graphics, nested for loops can be used to create two-dimensional
patterns. Here's a picture involving a grid of randomly colored circles
with radius = 50 on a 800x600 canvas. An exercise for later: create
this picture using two nested for loops and the
Color.randomColor() function.

7-29

 Yikes! Neglect to update state variable in loop

def printHalvesBroken(n):
 while n > 0:
 print(n)
 n = n/2 # n never changes in loop!

In[2]: printHalvesBroken(22)
22
22
22
22
22
22
22
22
...

An “infinite loop”
(in Canopy, stop with
Ctrl-C Ctrl-C)

7-30

Yikes! Variable update order matters

def sumHalvesBroken(n):
 sumSoFar = 0
 while n > 0:
 n = n/2 # updates n too early!
 sumSoFar = sumSoFar + n
 return sumSoFar

In[3]: sumHalvesBroken(22)
Out[3]: 19

step n sumSoFar

0 22 0

1 11 11

2 5 16

3 2 18

4 1 19

5 0 19

7-31

Yikes! Premature return

def sumHalvesBroken2(n):
 sumSoFar = 0
 while n > 0:
 sumSoFar = sumSoFar + n # or sumSoFar += n
 n = n/2
 return sumSoFar # wrong indentation!
 # exits function after first
 # loop iteration. Sometimes we
 # want this, but not here!

In[4]: sumHalvesBroken2(22)
Out[4]: 22

7-32

