
CS111 Computer Programming

Department of Computer Science
Wellesley College

Testing and Debugging

Program bugs
Bugs are mistakes in programs that cause them to behave incorrectly.

Debugging is the process of finding and fixing bugs in programs.

Testing programs reveals the presence of bugs when they don’t
behave as expected.

This lecture focuses on testing and debugging techniques. See the
accompanying notebook for many interactive examples and exercises.

2Testing/Debugging

One of the most famous bugs was an actual moth discovered by
Grace Hopper in a relay when she was a programmer for
Harvard’s Mark II Aiken Relay computer in 1947.

She had been a math professor at Vassar, was instrumental in the
development of COBOL, joined the Navy in 1943, and rose to
the rank Rear Admiral.

A little history

3Testing/Debugging

In []: countChar('s', 'Mississippi')
Out []: 4

In []: countChar('p', 'Mississippi')
Out []: 2

In []: countChar('a', 'Mississippi')
Out []: 0

In []: countChar('i', 'Mississippi')
Out []: 3

In []: countChar('I', ’MISSISSIPPI')
Out []: 0

In []: countChar('m', 'Mississippi')
Out []: 0

Interactive testing of Python functions in Thonny

These test results
are correct.

These test results
are incorrect, indicating
one or more bugs in the
countChar function.

4Testing/Debugging

BUGGY version of countChar
def countChar(char, word):

'''Return number of times char occurs in word, ignoring case.'''
counter = 0
for i in range(1, len(word)-1):

if word[i] == char.lower():
counter += 1

return counter.

Towards automated testing: Printing test cases

countChar('s', 'Mississippi') => 4
countChar('S', 'Mississippi') => 4
countChar('i', 'Mississippi') => 3
countChar('I', 'MISSISSIPPI') => 0
countChar('M', 'Mississippi') => 0
countChar('m', 'Mississippi') => 0

Printout in Thonny.
Somewhat better than before:
No need to interactively
enter test cases, but still
need to inspect results

Interactive testing is cumbersome. Can we do better?

5Testing/Debugging

def print_countChar(char, word):
print("countChar('" # This is just one long string

+ char + "', '" # concatenated out of parts
+ word + "' => "
+ str(countChar(char, word)) # This is the number that

results from calling countChar
)

print_countChar('s', 'Mississippi')
print_countChar('p', 'Mississippi')
print_countChar('a', 'Mississippi')
print_countChar('i', 'Mississippi')
print_countChar('I', 'MISSISSIPPI')
print_countChar('m', 'Mississippi')

Digression: f-strings for creating complex strings

def testSum(n1, n2):
print(f'{n1} + {n2} => {n1+n2}')

In []: testSum(10,7)
10 + 7 => 17

def printCountChar(char, word):
print(f"countChar('{char}','{word}')"

+ f" => {countChar(char, word))}"

print_countChar('s', 'Mississippi')

An f-string is a string preceded by the character f that specifies a string template
with "holes" (marked by { }) that can be filled by the results of arbitrary Python
expressions. The results of the expressions in the holes are automatically converted
to strings, so we don't need to explicitly use str to do that.

f-strings make it much easier to create the complex strings in print_countChar
because it's not necessary to (1) concatenate lots of strings with + or (2) convert
nonstrings to strings with str.

countChar('s', 'Mississippi') => 4
6Testing/Debugging

optimism for input/output testing
file test_avg.py
import optimism as opt

def avg(a,b):
return (a+b)//2

create test manager for function
test_avg = opt.testFunction(avg)

create test case and check result
case1 = test_avg.case(8,12)
case1.checkReturnValue(10)
check will succeed

don’t need to name test
test_avg.case(7,10)\

.checkReturnValue(8.5)
check will fail

test_avg.case(6,4)\
.checkReturnValue(5)

check will succeed

test_avg.case(1,7)\
.checkReturnValue(6)

check will fail (bad expectation) 7Testing/Debugging

>>> %Run test_avg.py
✓ test_avg.py:12
✗ test_avg.py:17
Result:
8

was NOT equivalent to the expected
value:

8.5
Called function 'avg' with arguments:
a = 7
b = 10

✓ test_avg.py:21
✗ test_avg.py:25
Result:
4

was NOT equivalent to the expected
value:

6
Called function 'avg' with arguments:
a = 1
b = 7

file & line number of check

optimism for input/output testing of countChar
def test_countChar():
''' A simple illustration of using

optimism to perform input/ouptut
testing on the countChar function

'''
tester = opt.testFunction(countChar)
tester.case('s', 'Mississippi')\

.checkReturnValue(4)
tester.case('p', 'Mississippi')\

.checkReturnValue(2)
tester.case('a', 'Mississippi')\

.checkReturnValue(0)
tester.case('i', 'Mississippi')\

.checkReturnValue(4)\
tester.case('I', 'MISSISSIPPI')

.checkReturnValue(4)
tester.case('m', 'mississippi’)\

.checkReturnValue(1)

test_countChar()

8Testing/Debugging

>>> %Run test_countChar.py
✓ test_countChar.py:20
✓ test_countChar.py:22
✓ test_countChar.py:24
✗ test_countChar.py:26

Result:
3

was NOT equivalent to the expected value:
4

Called function 'countChar' with arguments:
char = 'i'
word = 'Mississippi'

✗ test_countChar.py:28
Result:

0
was NOT equivalent to the expected value:

4
Called function 'countChar' with arguments:

char = 'I'
word = 'MISSISSIPPI'

✗ test_countChar.py:30
Result:

0
was NOT equivalent to the expected value:

1
Called function 'countChar' with arguments:

char = 'm'
word = 'mississippi'

countChar testing with test case tuples
testCases = [

('s', 'Mississippi', 4),
('p', 'Mississippi', 2),

('a', 'Mississippi', 0),

('i', 'Mississippi', 4),
('I', 'MISSISSIPPI', 4),

('m', 'mississippi', 1),
]

def test_countChar2():
''' test countChar cases in testCases
'''
tester = opt.testFunction(countChar)
for char, word, expected\

in testCases:
tester.case(char, word)\
.checkReturnValue(expected)

test_countChar2()

9Testing/Debugging

>>> %Run test_countChar.py
✓ test_countChar.py:51
✓ test_countChar.py:51
✓ test_countChar.py:51
✗ test_countChar.py:51

Result:
3

was NOT equivalent to the expected value:
4

Called function 'countChar' with arguments:
char = 'i'
word = 'Mississippi'

✗ test_countChar.py:51
Result:

0
was NOT equivalent to the expected value:

4
Called function 'countChar' with arguments:

char = 'I'
word = 'MISSISSIPPI'

✗ test_countChar.py:51
Result:

0
was NOT equivalent to the expected value:

1
Called function 'countChar' with arguments:

char = 'm'
word = 'mississippi'

Digression: Iterating over lists of tuples
nameTuples = [('Harry','Potter'),

('Hermione','Granger'),
('Ron','Weasley'),
('Luna','Lovegood')]

for first, last in nameTuples:
print(f'First name is {first} and last name is {last}')

First name is Harry and last name is Potter
First name is Hermione and last name is Granger
First name is Ron and last name is Weasley
First name is Luna and last name is Lovegood

The above code behaves like this
for tup in nameTuples:

first = tup[0]
last = tup[1]
print(f'First name is {first} and last name is {last}')

Expect each list value two be a two-element tuple. Name them first and last.

10Testing/Debugging

Glass-box testing
Our countChar testing so far is an example of glass-box testing,
which occurs when you are testing a function/program whose code
you can inspect. Because you can see the implementation,
you can focus on test cases that take advantage of implementation
details in order to attempt to get the function to misbehave.

For example:

o You should supply test inputs that force every conditional branch in the code to
be executed at least once.

o When loops are involved, you should supply inputs that cause the loop to be
executed zero, one, and multiple times.

o If a loop is executed over a sequence, you should test that it processes all
elements of the sequence appropriately. In particular, it should avoid errors in
which it fails to appropriately process the first or last elements of the sequence.

o When sequence indices are involved, you should supply test inputs that force
these indices to be edge cases.

11Testing/Debugging

Glass-box testing and counterexamples: hasCGBlock

The problem with this buggy hasCGBlock is that it just counts that the total number of Cs
and Gs in word is at least 5 without checking that they are consecutive. It will behave correctly
on strings with fewer than 5 Cs and Gs or with at least 5 consecutive Cs and Gs, but will
incorrectly return True for strings that have 5 or more Cs and Gs without having 5 of them in
a row.
A minimal counterexample is a counterexample with shortest length. Here, it’s any string of
length 6 with 5 Cs and Gs and one A or U that does not begin or end the string,
such as 'CGAGGC'. See the notebook for other glass-box testing examples.

12Testing/Debugging

def hasCGBlock(seq):
""" Given an RNA sequence, this function must return True if the sequence

contains a block of 5 consecutive 'C' and/or 'G' bases, and False
otherwise. The block may be any combination of 'C' and 'G' bases as long
as there are 5 in a row with no other bases in between them. But if other
bases are present, there might be more than 5 total 'C' or 'G' bases in
the sequence without it actually containing a 'CG’ block."""
count = 0
for base in seq:

if base in 'CG':
count += 1
if count == 5:

return True
return False

Black-box testing

In black-box testing, the testing
of the function is based purely
on its input/output behavior according to its contract without being
able to see the code implementing the function.

It's as if it's a mechanical contraption whose internal workings are
hidden inside a black box and cannot be viewed.

13Testing/Debugging

Categories of black-box test cases

14Testing/Debugging

When designing black-box tests case, you must imagine ways in which
the function might be implemented and how such implementations
could go wrong. Some classes of test cases:

1. Regular cases: These are “normal’’ cases that check basic
advertised input/output functionality, like tests of counting
different letters in "Mississippi" for countChar.

2. Edge cases: These are tests of extreme or special cases that the
function might not handle properly.

3. Implied conditional cases: When a function is supposed to take
in different categories of inputs (e.g., positive or negative
numbers, vowels vs. nonvowels), it implies that these categories
will be checked by conditionals in the function body. Since those
conditionals could be wrong, testing all combinations values from
input categories is prudent.

Edge case examples

15Testing/Debugging

o For numeric inputs, extreme inputs can include 0,
large numbers, negative numbers, and floats vs. ints.

o Fencepost errors are off-by-one errors, which are common in programs.
E.g n elements in a list are separated by n-1 commas, not n.

o For inputs that are indices of sequences, test indices near the ends of the sequence,
e.g., indices like 0, 1, -1 and len(seq), len(seq)-1, len(seq)+1. Since
Python allows negative indices, you should also test
-len(seq), -len(seq)-1, -len(seq)+1.

o For functions involving elements of sequences, test elements in the first and last
positions of the sequences, e.g. characters at the beginning and end of a string.

o For inputs that are sequences, empty and small sequences are often not handled
correctly, so you should always test empty and singleton strings/lists/tuples. When
specific numbers are mentioned in the contract (e.g. isCGBlock tests for 5
consecutive values) it's important to test strings of length <= 5 as edge cases.

o For inputs expected to be booleans, what happens if other Truthy/Falsey values
are supplied? Is it OK to treat other Truthy/Falsey values as True/False?

Black-box test cases for countChar

16Testing/Debugging

blackBoxCountCharTestCases = [
('a','', 0), # Test the empty string
('a','b', 0), # Test "negative case" singleton string
Test all capitalizations of "positive" singleton string
('a','a', 1), ('a','A', 1), ('A','a', 1), ('A','A', 1),
Test 2-element strings (char can be at beginning/end of word)
('a','Aa', 2), ('a','aA', 2), ('A','Aa', 2), ('A','aA', 2),
No need to repeat capitalization combinations here:
('a','ab', 1), ('a','ba', 1), ('a','bb', 0),
Length-3 strings distinguish ends from middles
('a', 'aaA', 3), ('a', 'aAA', 3), ('A', 'aaA', 3), ('A', 'aAA', 3),
('a', 'aab', 2), ('a', 'aba', 2), ('A', 'baa', 2), ('A', 'aAA', 2),
('a','abb', 1), ('a', 'bab', 1), ('a','bba', 1), ('a', 'bbb', 0),
Try a few longer strings
('a','aAAaA', 5), ('A','aAAaA', 5),
('a','abAbA', 3), ('A','abAbA', 3),
('a','babAb', 2), ('A','babAb', 2),
('a','bbbbb', 0),

]

When testing functions like countChar with string inputs, we don’t need real
English words or long strings. A variety of shorter strings can suffice.

Debugging Techniques

Test cases help us determine cases in which functions misbehave. But
then how do we determine why they misbehave and how do fix them?
The notebook contains examples of these debugging techniques for
identifying and fixing bugs in programs:

1. Pay Attention to Error Messages
2. Use print to show a function call with its arguments
3. Use print to show the return value of a function
4. Use print to show both calling and returning from a function
5. Using print to display iteration tables

Many programming environments (including more advanced versions of
Thonny) provide additional debugging tools that allow stepping through
programs line-by-line, examining the values of variables, navigating
data structures, etc.

17Testing/Debugging

Peter Mawhorter’s Debugging Handout
(available from the Reference tab on the CS111 web site)

1 Probe
Add print statements. Use to:

• Check if a function is being called or not:

def f(x, y):
return x + 3*y

æ def f(x, y):
print(" HELLO FROM f")
return x + 3*y

• Check the value of a variable:

y = 15 / x æ print ("x:", x)
y = 15 / x

• Check what happens at a conditional:

if x > 5:
y = 10

else:
y = 3

æ if x > 5:
print("x > 5")
y = 10

else:
print("x <= 5")
y = 3

2 Trace
Use multiple probes to understand code. Use to:

• Figure out where a value comes from:

def f(a):
g(a * 3)

def g(b):
for i in range(b):

h(9-i)

def h(c):
print (10/c)

(error if c is 0 in function h)

æ def f(a):
print ("a:", a)
g(a * 3)

def g(b):
print ("b:", b)
for i in range(b):

print("i:", i)
h(9-i)

def h(c):
print ("c:", c)
print (10/c)

3 Unpack
Split up a complicated expression into multiple statements. Use this to:

• Isolate an error in a complex expression:

x = function (
(a + 3*b)/(c * d),
b / a

)

(ZeroDivisionError on line 1)

æ top = a + 3*b
bot = c * d
fst = top / bot
sec = b / a
x = function (fst , sec)

(ZeroDivisionError on line 4, so
a must be the problem)

4 Toggle
Turn a line of code into a comment. Use to:

• Disable (can later re-enable) optional code:

def f(a, b):
print ("R: ", a/b)
return a + b + a

¡ def f(a, b):
print ("R: ", a/b)
return a + b + a

• Temporarily replace broken code with a dummy value:

x = (3*y + 4*z)/w æ #x = (3*y + 4*z)/w
x = 9

5 Bisect
Comment out half of your code to find the half that works, and then half
of the broken part, etc., until you isolate an error. Use this to:

• Find missing brackets or commas:

pairs = [
[0, 1],
[10, 11,
[20, 21] ,
[30, 31] ,

]

(syntax error at end of file)

æ pairs = [
[0, 1],
[10, 11,

[20, 21],
[30, 31],

]

(works now, so error must be in
the commented zone)

Note: To fit examples on this page, short and meaningless variable names have been used. DO NOT do this in your own code. 18Testing/Debugging

