
CS111 Computer Programming

Department of Computer Science
Wellesley College

List Comprehension &
List Sorting

Review: Mapping and Filtering

2List Sorting

1. MAPPING: return a new list that results from performing an
operation on each element of a given list.
E.g. Return a list of the first names in people

['Katniss', 'Peta', 'Finnick', 'Effie']

2. FILTERING: return a new list that results from keeping
those elements of a given list that satisfy some condition
E.g. Return a list of names in people whose last names start
with a vowel ['Katniss Everdeen', 'Finnick Odair']

people = ['Katniss Everdeen', 'Peta Mellark',
'Finnick Odair', 'Effie Trinket']

nums = [8, 3, 1, 2]
result = []
for x in nums:

result.append(x*2)
print(result) # prints [16, 6, 2, 4]

Simplifying mapping & filtering
with list comprehension (LC)

3List Sorting

[x*2 for x in nums]

List Comprehension
for mapping

result = []
for n in nums:

if n%2 == 0:
result.append(n)

print(result) # prints [8, 2]

[n for n in nums if n%2 == 0]

List Comprehension
for filtering

Vocabulary:
Comprehension: the
act of process of
comprising.

print ()

print ()

List comprehension (LC) syntax

List Sorting

List Comprehension for mapping

[elementExpr for var in sequenceExpr]

[var for var in sequenceExpr if testExpr]
List Comprehension for filtering

Concepts in this slide:
List comprehension
creates a new list in a
single statement.

To notice:
- A list comprehension itself is an expression that denotes a list.
- A list comprehension starts with an element expression (note that a variable

references like var is an expression), for example, x*2 or n.
- Never use .append in the element expression . List comprehension s avoid

explicitly writing .append (though it is used behind the scenes).
4

A list comprehension is an expression that
creates a new list. It is written using what looks
like a for loop inside a pair of square brackets.

List comprehensions with Mapping and Filtering

[expression for item in sequence if testExpr]

The example below shows a list
comprehension that extracts the even
numbers from a range object and creates a
list of their squares. The code to the right
is analogous and shows the same process
with iteration.

result = []
for n in range(10):

if n%2 == 0:
result.append(n**2)

print(result)
prints [4, 16, 36, 64]

[n**2 for n in range(10) if n%2 == 0]

List Comprehension
for filtering and mapping

List Sorting 5

print ()

Your turn to use list comprehension

1. Create a list of the lengths of all the strings in states

states = ["Alabama", "Arkansas", "California", ”Illinois", "Massachusetts",
"Michigan", "Oklahoma", ”Utah", "Washington"]

3. Create a list of strings in states that end in 'a'

2. Create a list of the of the abbreviations of states
['AL', 'AR', 'CA', ‘IL', 'MA', 'MI', 'MO', 'WA']

List Sorting 6

The solutions to these exercises are in the solution notebook for this lecture.

The built-in function sorted creates a new list where items are
ordered in ascending order.
In [1]: numbers = [35, -2, 17, -9, 0, 12, 19]
In [2]: sorted(numbers)
Out[2]: [-9, -2, 0, 12, 17, 19, 35] # ascending order
In [3]: numbers
Out[3]: [35, -2, 17, -9, 0, 12, 19] # original list unchanged
In [4]: sorted(numbers, reverse=True)
Out[4]: [35, 19, 17, 12, 0, -2, -9] # descending order

Sorting a list of numbers
Concepts in this slide:
The built-in function
sorted for sorting lists.

To notice:
- The function sorted creates a new list and

doesn’t modify the original list.
- The function sorted can take more than one

parameter. For example, in In[4] it’s taking
reverse=True in addition to the list to sort.

List Sorting 7

We can apply the function sorted to other sequences too: strings
and tuples. Similarly to sorting lists, sorted will again create a new
list of the sorted elements.

In [5]: phrase = 'Red Code 1'
In [6]: sorted(phrase)
Out[6]: [' ', ' ', '1', 'C', 'R', 'd', 'd', 'e', 'e', 'o']
In [7]: phrase
Out[7]: 'Red Code 1' # original phrase doesn’t change

In [8]: digits = (9, 7, 5, 3, 1) # this is a tuple
In [9]: type(digits)
Out[9]: tuple
In [10]: sorted(digits)
Out[10]: [1, 3, 5, 7, 9]

sorted with other sequences
Concepts in this slide:
sorted works with other
sequence types, but always
returns a list.

Question:
Can you explain the order of
characters in Out[6]? Do you
remember the ASCII table?

List Sorting 8

9

ASCII Table

Reminder
All keyboard characters are
represented as numbers. The
first 32 numbers (from 0 to 31)
are reserved for invisible
characters (mostly on old
keyboards). Starting at 32 we
have space, then ! and several
special characters, followed by
digits, uppercase letters, more
special characters, lowercase
letters, and concluding with other
special characters.

The space character has the
code 32, making it the first of
the visible string characters.

List Sorting

10

In [11]: phrase = "99 red balloons *floating* in the Summer sky"
In [12]: words = phrase.split()
In [13]: words
Out[13]: ['99', 'red', 'balloons', '*floating*', 'in', 'the',
'Summer', 'sky']
In [14]: sorted(words)
Out[14]: ['*floating*', '99', 'Summer', 'balloons', 'in', 'red',
'sky', 'the']
In [15]: sorted(words, reverse=True)
Out[15]: ['the', 'sky', 'red', 'in', 'balloons', 'Summer', '99',
'*floating*']

Sorting a list of strings

To notice:
String characters are ordered by these rules:
a) Punctuation symbols (. , ; : * ! # ^)
b) Digits
c) Uppercase letters
d) Lowercase letters

Concepts in this slide:
When sorting a list of
strings, order is specified
by the first string element.

List Sorting

11

In [16]: triples = [(8, 'a', '$'), (7, 'c', '@'),
(7, 'b', '+'), (8, 'a', '!')]

In [17]: sorted(triples)
Out[17]: [(7, 'b', '+'), (7, 'c', '@'), (8, 'a', '!'),

(8, 'a', '$')]

Sorting a list of tuples

To notice:
If a tuple is composed of several items, the sorting of the list of tuples
works like this:
a) Sort tuples by first item of each tuple.
b) If there is a tie (e.g., two tuples with 7), compare the second item.
c) If the second item is also the same, look to the next item, and so on.
This approach to sorting tuples is known as lexicographic ordering, which is
a generalization of dictionary ordering on strings (where each tuple element
is treated as a generalized character in a sequence).
Issue: Sorting starts always with the item at index 0. What if we want to
sort by items in the other indices?

Concepts in this slide:
The mechanics of sorting a
list of tuples.

List Sorting

12

Problem: We have a list of tuples and want to sort by the second item. For example,
sort by a person’s age in the list below.

In [18]: people = [('Mary Beth Johnson', 18), ('Ed Smith', 17),
('Janet Doe', 25), ('Bob Miller', 31)]

Sorting with the key
keyword parameter [1]

Concepts in this slide:
Using the parameter key
to sort with functions.

The function sorted takes several parameters, which we can find by typing help in the
Thonny shell.

The first parameter is an “iterable”, meaning, any object over which we can iterate (list,
string, tuple). We have already seen the keyword parameter reverse and now we’ll see
the keyword parameter key.
This parameter specifies a function that for each element determines how it should be
compared to other elements. List Sorting

13

Sorting with the key
keyword parameter [2]

Concepts in this slide:
Using the parameter key
to sort with functions.

def age(personTuple):
return personTuple[1]

In [19]: sorted(people, key=age)
Out[19]: [('Ed Smith', 17),

('Mary Beth Johnson', 18),
('Janet Doe', 25),
('Bob Miller', 31)]

def lastName(personTuple):
return personTuple[0].split()[-1]

In [20]: sorted(people, key=lastName)
Out[20]: [('Janet Doe', 25),

('Mary Beth Johnson', 18),
('Bob Miller', 31)
('Ed Smith', 17)]

To notice:
The parameter key is
assigned as a value a
function name. While usually
age and lastName will be
invoking a function, here
they are used as values (no
parentheses). Functions in
Python are values just like
numbers and strings. We use
names to refer to these
values.

List Sorting

14

Function names refer to function values

age
personTuple

return personTuple[1]

lastName personTuple

return personTuple[0].split()[-1]
foo

boo

We can create two variables boo and
foo, assign to them the function
values, and use them as aliases for
calling the two functions. See the
examples below.

Functions in Python are
values. Their names point
to a place in memory
where the function values
are stored, as the
diagrams above show.

List Sorting

Function that creates this function frame when called:

Function that creates this function frame when called:

15

Breaking ties with key functions

In [21]: sorted(people2, key=ageLastFirst)
Out[21]: [('Ed Doe', 18),

('Ana Jones', 18),
('Ed Jones', 18),
('Ana Doe', 25),
('Bob Doe', 25)]

people2 = [('Ed Jones', 18), ('Bob Doe', 25), ('Ed Doe', 18),
('Ana Doe', 25), ('Ana Jones', 18)]

The people2 list has many ambiguities due to first names, last names, and ages
that are the same:

def ageLastFirst(person):
return (age(person), lastName(person), firstName(person))

We define ageLastFirst to be a key function that will first sort by age, then
by last name (if ages are equal), then by first name (if age and last name are equal.)

Note:
The functions age and
lastName were defined in
Slide 12, the function
firstName is an exercise in
the Notebook.

List Sorting

16

Lists have two methods for sorting. These methods mutate the
original list. They are sort and reverse.
In [22]: numbers = [35, -2, 17, -9, 0, 12, 19]
In [23]: numbers.sort() # Mutates list; nothing is returned
In [24]: numbers
Out[24]: [-9, -2, 0, 12, 17, 19, 35]

In [25]: numbers2 = [35, -2, 17, -9, 0, 12, 19]
In [26]: numbers2.reverse() # Mutates list; nothing is returned
In [27]: numbers2
Out[27]: [19, 12, 0, -9, 17, -2, 35] # no sorting

In [28]: numbers2.sort()
In [29]: numbers2.reverse()
In [30]: numbers2
Out[30]: [35, 19, 17, 12, 0, -2, -9]

Mutating list methods
for sorting

Concepts in this slide:
Two new list methods: sort
and reverse. They mutate
the original list.

Note:
The method sort similarly to
sorted takes the parameters
key and reverse as needed.

List Sorting

Summary
1. Sorting is one of the most common activities that we humans perform. This applies to

software-related activities as well: sorting files in your computer by name, by date, by type;
sorting students by section, by last name, by class year, by grade; sorting courses in the
course browser by department; day of week, distributions, class size, time of day, etc.

2. Python offers a versatile built-in function, sorted, that can sort lists and other sequences,
always returning a new list. sorted takes named parameters such as reverse and key.

3. Often we need to sort lists of tuples or lists of lists. By default, sorted only sorts based
on the value of the first item. To sort by the value of any item in a complex element, we
provide a function value for the key parameter to indicate which item to use for sorting.

4. Functions like sorted that take as parameters other functions are know as Higher Order
Functions. We will not see more of these functions in Python, but look for them in higher
level CS courses.

5. List objects can also be sorted by two list methods: sort and reverse, which mutate the
original list and don’t return a new list.

17List Sorting

Answers to exercises in Slide 6:
1) [len(state) for state in states]
2) [state[:2].upper() for state in states]
3) [state for state in states if state.endswith('a')]

