
CS111 Computer Programming

Department of Computer Science
Wellesley College

Graphics with Loops

Motivation: How to create these pattern?

1Graphics with Loops

How to achieve
repetition?

How to store color
values so as to
repeat them in the
same order?

Graphics Examples with for Loops
We can use for loops in conjunction with the range function
and the turtle module to create complex pictures with
repeated subpatterns that are transformed by scaling, rotation,
etc.

Each of these pictures is created
by using a loop to create multiple
copies of a simple shape (ellipse,
circle, square) that differ in their
rotation, size, and/or color.

3Graphics with Loops

A simple flower

from turtle import *

for i in range(12):
fillcolor('maroon4')
#30 is 360/12
rt(30)
penup()
fd(150/2)
pendown()
begin_fill()
the petals are 150 tall and 75 wide
drawEllipse(150/4, 2)
end_fill()
penup()
bk(150/2)
pendown()

4Graphics with Loops

Abstracting over our flower
with makeFlower

makeFlower(10, 'brown', 90, 150)

Define a function
makeFlower that takes as
arguments (1) the number of
petals (2) the color of each petal
(3) the width of each petal and
(4) the height of each petal and
draw the appropriate flower.

makeFlower(12, 'yellow', 30, 150)

makeFlower(30, 'magenta', 20, 150)
5Graphics with Loops

A simple nautilus shell

for i in range(50):
fillcolor('white')
begin_fill()
make the circle a bit smaller in each iteration
circle(100*(0.95**i))
end_fill()
rt(10)

6Graphics with Loops

Parameterize it:
makeNautilus

def makeNautilus(num, size, angle, shrink, color):
for i in range(num):

fillColor(color)
begin_fill()
circle(size*(shrink**i))
end_fill()
rt(angle)

makeNautilus(50, 100, 10, .95, 'pink')

7Graphics with Loops

Make it fancy:
makeColorfulNautilus

def makeColorfulNautilus(num, size, angle, shrink, colorList):
for i in range(num):

fillColor(colorList[i % len(colorList)])
begin_fill()
circle(size*(shrink**i))
end_fill()
rt(angle)

makeColorfulNautilus(50,100,
10, .95, ['pink','blue','green','magenta'])

The % operator makes sure that
despite the value of num (and as a
result, of i), the indices always are
only between 0 and len of colorList.

8Graphics with Loops

Rotated squares

for i in range(16):
fillcolor(random(),random(),random())
begin_fill()
drawSquare(200*(0.9**i))
end_fill()
lt(6)

The function fillcolor can get as arguments
red, green, and blue values between 0 and 1. By
using the function random will generate new
colors in each iteration, thus you’ll see a
differently mix of colors every time you run the
code.

9Graphics with Loops

Rose-colored squares

for i in range(24,0,-1):
fillcolor(i/24.0,0.5,0.5)
begin_fill()
drawSquare(10+10*i)
end_fill()
lt(15)

We must start drawing from the bigger squares, so the smaller
squares are not covered but layered on top.

10Graphics with Loops

