
CS111 Computer Programming

Department of Computer Science
Wellesley College

Working with Real-World Data

Real-world data 20-2

Real-world data 20-3

Representation in Congress is based on
population. More people, more seats.

US States and Capitals: Doing more with our data

Real-world data 20-4

Partial screenshot of the us-states-more.csv file,
viewed with the Google Spreadsheet editor.

Some questions to answer with our data:

- Which are the most populated US states? Rank the data in that order.
- Which are the least populated US states? Rank the data in that order.
- Which US state capitals are the most populated? Rank the data in that order.
- Which US state capitals are the least populated? Rank the data in that order.
- What percentage of each US state’s population lives in the state capital? Rank

the data by that percentage from the largest to the smallest.

Moving beyond max and min by applying
sorting to sequences

Real-world data 20-5

Real-world data 20-6

The built-in function sorted creates a new list where items are ordered
in ascending order.
In [1]: numbers = [35, -2, 17, -9, 0, 12, 19]
In [2]: sorted(numbers)
Out[2]: [-9, -2, 0, 12, 17, 19, 35] # ascending order
In [3]: numbers
Out[3]: [35, -2, 17, -9, 0, 12, 19] # original list unchanged
In [4]: sorted(numbers, reverse=True)
Out[4]: [35, 19, 17, 12, 0, -2, -9] # descending order

Sorting a list of numbers
Concepts in this slide:
The built-in function
sorted for sorting lists.

To notice:
- The function sorted creates a new list and

doesn’t modify the original list.
- The function sorted can take more than one

parameter. For example, in In[4] it’s taking
reverse=True in addition to the list to sort.

Real-world data 20-7

We can apply the function sorted to other sequences too: strings
and tuples. Similarly to sorting lists, sorted will again create a new
list of the sorted elements.

In [5]: phrase = 'Red Code 1'
In [6]: sorted(phrase)
Out[6]: [' ', ' ', '1', 'C', 'R', 'd', 'd', 'e', 'e', 'o']
In [7]: phrase
Out[7]: 'Red Code 1' # original phrase doesn’t change

In [8]: digits = (9, 7, 5, 3, 1) # this is a tuple
In [9]: type(digits)
Out[9]: tuple
In [10]: sorted(digits)
Out[10]: [1, 3, 5, 7, 9]

sorted with other
sequences

Concepts in this slide:
sorted works with other
sequence types, but always
returns a list.

Question:
Can you explain the order of
characters in Out[6]? Do you
remember the ASCII table?

20-8

ASCII Table

Reminder
All keyboard characters are
represented as numbers. The
first 32 numbers (from 0 to 31)
are reserved for invisible
characters (mostly on old
keyboards). Starting at 32 we
have space, then ! and several
special characters, followed by
digits, uppercase letters, more
special characters, lowercase
letters, and concluding with other
special characters. Real-world data

The space character has the
code 32, making it the first of
the visible string characters.

Real-world data 20-9

In [11]: phrase = "99 red balloons *floating* in the Summer sky"
In [12]: words = phrase.split()
In [13]: words
Out[13]: ['99', 'red', 'balloons', '*floating*', 'in', 'the',
'Summer', 'sky']
In [14]: sorted(words)
Out[14]: ['*floating*', '99', 'Summer', 'balloons', 'in', 'red',
'sky', 'the']
In [15]: sorted(words, reverse=True)
Out[15]: ['the', 'sky', 'red', 'in', 'balloons', 'Summer', '99',
'*floating*']

Sorting a list of strings

To notice:
String characters are ordered by these rules:
a) Punctuation symbols (. , ; : * ! # ^)
b) Digits
c) Uppercase letters
d) Lowercase letters

Concepts in this slide:
When sorting a list of
strings, order is specified
by the first string element.

Real-world data 20-10

In [16]: triples = [(8, 'a', '$'), (7, 'c', '@'),
(7, 'b', '+'), (8, 'a', '!')]

In [17]: sorted(triples)
Out[17]: [(7, 'b', '+'), (7, 'c', '@'), (8, 'a', '!'),

(8, 'a', '$')]

Sorting a list of tuples

To notice:
If a tuple is composed of several items, the sorting of the list of tuples
works like this:
a) Sort tuples by first item of each tuple.
b) If there is a tie (e.g., two tuples with 7), compare the second item.
c) If the second item is also the same, look to the next item, and so on.
This approach to sorting tuples is known as lexicographic ordering, which is
a generalization of dictionary ordering on strings (where each tuple element
is treated as a generalized character in a sequence).
Issue: Sorting starts always with the item at index 0. What if we want to
sort by items in the other indices?

Concepts in this slide:
The mechanics of sorting a
list of tuples.

Real-world data 20-11

Problem: We have a list of tuples and want to sort by the second item. For example,
sort by a person’s age in the list below.

In [18]: people = [('Mary Beth Johnson', 18), ('Ed Smith', 17),
('Janet Doe', 25), ('Bob Miller', 31)]

Sorting with the key
parameter [1]

Concepts in this slide:
Using the parameter key
to sort with functions.

The function sorted takes several parameters, which we can find by typing help in the
Thonny shell.

The first parameter is an “iterable”, meaning, any object over which we can iterate (list,
string, tuple). We have already seen the parameter reverse and now we’ll see key.
This specifies a function that for each element determines how it should be compared to other
elements.

Real-world data 20-12

Sorting with the key
parameter [2]

Concepts in this slide:
Using the parameter key
to sort with functions.

def age(personTuple):
return personTuple[1]

In [19]: sorted(people, key=age)
Out[19]: [('Ed Smith', 17),

('Mary Beth Johnson', 18),
('Janet Doe', 25),
('Bob Miller', 31)]

def lastName(personTuple):
return personTuple[0].split()[-1]

In [20]: sorted(people, key=lastName)
Out[20]: [('Janet Doe', 25),

('Mary Beth Johnson', 18),
('Bob Miller', 31)
('Ed Smith', 17)]

To notice:
The parameter key is
assigned as a value a
function name. While usually
age and lastName will be
invoking a function, here
they are used as values (no
parentheses). Functions in
Python are values just like
numbers and strings. We use
names to refer to these
values.

Real-world data 20-13

Function names refer to function values

age
personTuple

return personTuple[1]

lastName personTuple

return personTuple[0].split()[-1]
foo

boo

We can create two variables boo and
foo, assign to them the function
values, and use them as aliases for
calling the two functions. See the
examples below.

Functions in Python are
values. Their names point
to a place in memory
where the function values
are stored, as the
diagrams above show.

Real-world data 20-14

Breaking ties with key functions

In [21]: sorted(people2, key=ageLastFirst)
Out[21]: [('Ed Doe', 18),

('Ana Jones', 18),
('Ed Jones', 18),
('Ana Doe', 25),
('Bob Doe', 25)]

people2 = [('Ed Jones', 18), ('Ana Doe', 25), ('Ed Doe', 18),
('Bob Doe', 25), ('Ana Jones', 18)]

The people2 list has many ambiguities due to first names, last names, and ages
that are the same:

def ageLastFirst(person):
return (age(person), lastName(person), firstName(person))

We define ageLastFirst to be a key function that will first sort by age, then
by last name (if ages are equal), then by first name (if age and last name are equal.)

Note:
The functions age and
lastName were defined in
Slide 12, the function
firstName is an exercise in
the Notebook.

Real-world data 20-15

Lists have two methods for sorting. These methods mutate the
original list. They are sort and reverse.

In [22]: numbers = [35, -2, 17, -9, 0, 12, 19]
In [23]: numbers.sort() # Mutates list; nothing is returned
In [24]: numbers
Out[24]: [-9, -2, 0, 12, 17, 19, 35]

In [25]: numbers2 = [35, -2, 17, -9, 0, 12, 19]
In [26]: numbers2.reverse() # Mutates list; nothing is returned
In [27]: numbers2
Out[27]: [19, 12, 0, -9, 17, -2, 35] # no sorting

In [28]: numbers2.sort()
In [29]: numbers2.reverse()
In [30]: numbers2
Out[30]: [35, 19, 17, 12, 0, -2, -9]

Mutating list methods
for sorting

Concepts in this slide:
Two new list methods: sort
and reverse. They mutate
the original list.

Note:
The method sort similarly to
sorted takes the parameters
key and reverse as needed.

Real-world data 20-16

Can dictionaries be sorted? Explain the outputs!
In [31]: fruitColors = {"banana": "yellow", "kiwi":
"green", "grapes": "purple", "apple": "red", "lemon":
"yellow", "pomegranate": "red"}
In [32]: sorted(fruitColors)
Out[32]: ['apple', 'banana', 'grapes', 'kiwi', 'lemon',
'pomegranate']
In [33]: sorted(fruitColors.keys())
Out[33]: ['apple', 'banana', 'grapes', 'kiwi', 'lemon',
'pomegranate']
In [34]: sorted(fruitColors.values())
Out[34]: ['green', 'purple', 'red', 'red', 'yellow',
'yellow']
In [35]: sorted(fruitColors.items())
Out[35]: [('apple', 'red'), ('banana', 'yellow'),
('grapes', 'purple'), ('kiwi', 'green'), ('lemon',
'yellow'), ('pomegranate', 'red')]

Real-world data 20-17

Sort a list of dictionaries

In [36]: peopleDctList = [{'name':'Mary Beth Johnson', 'age': 18},
{'name':'Ed Smith', 'age': 17},
{'name':'Janet Doe', 'age': 25},
{'name':'Bob Miller', 'age': 31}]

In [37]: sorted(peopleDctList)
Traceback (most recent call last):

File "<pyshell>", line 1, in <module>
TypeError: '<' not supported between instances of 'dict' and 'dict'

def byAge(personDct):
return personDct['age']

In [38]: sorted(peopleDctList, key=byAge, reverse=True)
Out[38]: [{'name': 'Bob Miller', 'age': 31},

{'name': 'Janet Doe', 'age': 25},
{'name': 'Mary Beth Johnson', 'age': 18},
{'name': 'Ed Smith', 'age': 17}]

Real-world data 20-18

US States and Capitals: Doing more with our data

Real-world data 20-19

Partial screenshot of the us-states-more.csv file,
viewed with the Google Spreadsheet editor.

Some questions to answer with our data:

1. Which are the most populated states? Rank the data in that order.
2. Which are the least populated states? Rank the data in that order.
3. Which state capitals are the most populated? Rank the data in that order.
4. Which state capitals are the least populated? Rank the data in that order.
5. What percentage of each state’s population lives in the state capital? Rank

the data by that percentage from the largest to the smallest.

Questions 1 & 2: Sort by US state population

Real-world data 20-20

How to implement the solution with Python code:

1. Read the content of the CSV file us-states-more.csv using
csv.DictReader, which returns a list of dictionaries.

2. Create a helper function byStatePop, which, given a dictionary with state data (one row
from our file), returns the appropriate value. Remember that all values in the dictionary
are strings, because they come from the CSV file.

3. Apply the sorted function to the list of dictionaries of state data, using the key
parameter with the function byStatePop.

4. Look at the results, in which way are they sorted?
5. Include the function parameter reverse to change the order of sorting.
6. Use f-string formatting to print out top six results as shown below.

Questions 3 &4: Sort by capital population

Real-world data 20-21

How to implement the solution with Python code:

Follow the steps from the previous slide, but create appropriate functions to use with the
parameter key for sorted. Try to come as close as possible to these outputs, but don’t worry
if you cannot. These outputs use some special f-string features for formatting.

Questions 5: Sort by percentage

Real-world data 20-22

How to implement the solution with Python code:

This will be similar to the two previous slides, by you’ll have to create a helper function,
byPercentage, which can calculate the percentage of people living in the capital of the
state. This function will be used by the sorted function, as well as by the f-string. Try to
come close to this output, but do not worry if you cannot achieve it yet.

Test your knowledge
1. What is the output when we apply the function sorted on

a) a list,
b) a string,

c) a tuple, or

d) a dictionary?
2. What are some differences between the built-in function sorted and the list

method sort?
3. In this lecture, we saw different invocations for the function sorted. With one

argument, with two, and even three. When we used more than one argument, we
provided the parameter name as well, for example, reverse=True or
key=age. Speculate on why we needed to do that.

4. What do we need to do in order to sort a list of dictionaries? Why is that?
5. What are some other questions that you could answer with the Census data. Can

you write the Python code to answer them? Try it out and let us know what you
did. We might add that in our material for future semesters.

Real-world data 20-23

