Working with Real-World Data

ﬁw ’ﬂﬁ *w i‘gw“ w w*’i\ﬂ‘
Wwﬂ;* * *ﬁ‘w;‘ i, ,fm,w CS111 Computer Programming
1 "atlaled Mr

M Census 2020 pw'll‘w

w’h ' s T ‘II‘.i'" n meg Tw!‘% Department of Computer Science

a‘ﬁ‘ 2 'l"ﬂ"iw mw’%‘%’ Wellesley College

Moo

ens 2020 m

4 w."wuw

Real-world data

20-2

Representation in Congress is based on

population. More people, more seats.

STATE

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
Florida
Georgia
Hawaii
Idaho
lllinois
Indiana
lowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan

APPORTIONMENT

POPULATION
(APRIL 1, 2020)

5,030,053
736,081
7,158,923
3,013,756
39,576,757
5,782,171
3,608,298
990,837
21,670,527
10,725,274
1,460,137
1,841,377
12,822,739
6,790,280
3,192,406
2,940,865
4,509,342
4,661,468
1,363,582
6,185,278
7,033,469
10,084,442

NUMBER OF

APPORTIONED
REPRESENTATIVES

BASED ON
2020 CENSUS?

= N (&)

—
WOONOOZOPR,rPLONNNPLPOO_O010NPSO-N

—

Real-world data

CHANGE FROM

2010 CENSUS

APPORTIONMENT

00000000~ 000 ~~00~~~000O0

20-3

US States and Capitals:

State
Alabama
Alaska
Arizona
Arkansas
California
Colorado

N oo o AW =

Some questions to answer with our data:

B c
StatePop Abbrev.
4921532 AL

731158 AK
7421401 AZ
3030522 AR

39368078 CA
5807719 CO

D
Capital
Montgomery
Juneau
Phoenix
Little Rock
Sacramento
Denver

Doing more with our data

E
CapitalPop

198525

32113

1680992

197312

513624 Partial screenshot of the us-states-more.csv file,

727211 viewed with the Google Spreadsheet editor.

- Which are the most populated US states? Rank the data in that order.
- Which are the least populated US states? Rank the data in that order.
- Which US state capitals are the most populated? Rank the data in that order.
- Which US state capitals are the least populated? Rank the data in that order.

- What percentage of each US state’s population lives in the state capital? Rank
the data by that percentage from the largest to the smallest.

Real-world data

20-4

Moving beyond max and min by applying
sorting to sequences

Real-world data 20-5

Concepts in this slide:
The built-in function
sorted for sorting lists.

Sorting a list of numbers

The built-in function soxrted creates a new list where items are ordered
in ascending order.

In [1]: numbers = [35, -2, 17, -9, 0, 12, 19]

In [2]: sorted(numbers)

Out[2]: [-9, -2, 0, 12, 17, 19, 35] # ascending order

In [3]: numbers

Out[3]: [35, -2, 17, -9, 0, 12, 19] # original list unchanged
In [4]: sorted(numbers, reverse=True)

Out[4]: [35, 19, 17, 12, 0, -2, -9] # descending order

To notice:

- The function sorted creates a new list and
doesn’t modify the original list.

- The function sorted can take more than one
parameter. For example, in In[4] it’s taking

reverse=True in addition to the list to sort.
Real-world data 20-6

Concepts in this slide:

SOXY t o d Wlth Othe r sorted works with other
sequence types, but always
Sequences returns a list.

We can apply the function sorted to other sequences too: strings
and tuples. Similarly to sorting lists, sorted will again create a new
list of the sorted elements.

In [5]: phrase = 'Red Code 1'

In [6]: sorted(phrase)

out([(6]: [" ', "', '1', 'Cc', 'R', 'd', 'd', 'e', 'e', 'o']
In [7]: phrase

Out[7]: 'Red Code 1' # original phrase doesn’t change

In [8]: digits = (9, 7, 5, 3, 1) # this is a tuple
In [9]: type(digits)

Out[9]: tuple Question:
In [10]: sorted(digits) Can you explain the order of
out[10]: [1, 3, 5, 7, 9] characters in Out[6]? Do you

remember the ASCII table?

Real-world data 20-7

Dec Chr Dec Chr Dec Chr Dec Chr Dec Chr

ASCII Table

0 26 52 4 78 N 104 h
1 27 53 5 79 O 105 i
2 28 54 6 80 P 106 j
3 29 55 7 81 Q 107 k
The space character has the 4 30 56 8 82 R 108 |
code 32, making it the first of 5 3 57 9 83 S 109
the visible string characters. m
6 58 : 84 T 10n
7 3371 50 ; 8 U 11 o
8 34 " 60 < 8 V 12p
9 35 # 61 = 8 W 13 q
: 10 36 $ 62 > 8 X 14r
Reminder 11 37 % 63 ? 8 Y 115s
All keyboard characters are 12 38 & 64 @ 9 Z 116t
represented as numbers. The 13 3 ' 6 A 91 [M7u
first 32 numbers (from 0 to 31) ™ 0§ G8) B 5
L 15 41 67 93 119
are reserved for invisible) c] W
H ters (l q 16 42 * 68 D 94 A 120 x
characters (mos .yon 0 17 45+ 69 E 95 _ 121y
keyboards). Starting at 32 we 18 44 70 F 96 ° 1222
have space, then ! and several 19 45 - 71 G 97 a 123 {
special characters, followed by 20 46 . 72 H 9 b 124 |
digits, uppercase letters, more 21 47 | 731 99 ¢ 125}
special characters, lowercase 22 48 0 74 J 100d 126 ~
letters, and concluding with other 23 4 1 75 K 101 e 127 DEL
: 24 50 2 76 L 102 f
special characters.
25 51 3 77 M 103 g Real-world data 20-8

Concepts in this slide:
When sorting a list of
strings, order is specified
by the first string element.

Sorting a list of strings

In [11]: phrase = "99 red balloons *floating* in the Summer sky"
In [12]: words = phrase.split()
In [13]: words
Out[1l3]: ['99', 'red', 'balloons', '*floating*', 'in', 'the',
'Summer', 'sky']
In [14]: sorted(words)
Out[1l4]: ['*floating*', '99', 'Summer', 'balloons', 'in', 'red',
'sky', 'the']
In [15]: sorted(words, reverse=True)
Out[15]: ['the', 'sky', 'red', 'in', 'balloons', 'Summer', '99',
'*floating*']

To notice:

String characters are ordered by these rules:

a) Punctuation symbols (., ; : * | # A)

b) Digits

c) Uppercase letters

d) Lowercase letters Real-world data 20-9

Concepts in this slide:

< s The mechanics of sorting a
Sorting a list of tuples .

In [16]: triples = [(8, 'a', '$'"'), (7, 'c', '@"),
(7, 'b', "+'), (8, 'a', '"'")]
In [17]: sorted(triples)
Out[1l7]: [(7, 'b', '"+'), (7, 'c¢', '@'), (8, 'a', ''"),
(8, 'a', '$")1

To notice:

If a tuple is composed of several items, the sorting of the list of tuples
works like this:

a) Sort tuples by first item of each tuple.
b) If there is a tie (e.g., two tuples with 7), compare the second item.
c) If the second item is also the same, look to the next item, and so on.

This approach to sorting tuples is known as lexicographic ordering, which is
a generalization of dictionary ordering on strings (where each tuple element
is treated as a generalized character in a sequence).

Issue: Sorting starts always with the item at index 0. What if we want to
sort by items in the other indices?

Real-wotld data 20-10

S()rtin g Wlth the key Concepts in this slide:

Using the parameter key
to sort with functions.

parameter [1]

Problem: We have a list of tuples and want to sort by the second item. For example,
sort by a person’s age in the list below.

In [18]: people = [('Mary Beth Johnson', 18), ('Ed Smith', 17),
('Janet Doe', 25), ('Bob Miller', 31)]

The function sorted takes several parameters, which we can find by typing help in the
ThOIlIly Sheﬂ. Shell =

>>> help(sorted)

Help on built-in function sorted in module builtins:

sorted(iterable, /, *, key=None, reverse=False)
Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.

>>>
The first parameter 1s an “iterable”, meaning, any object over which we can iterate (list,
string, tuple). We have already seen the parameter reverse and now we’ll see key.

This specifies a function that for each element determines how it should be compared to other
elements.

Real-world data 20-11

S()rtin g Wlth the key Concepts in this slide:

Using the parameter key
to sort with functions.

parameter [2]

def age(personTuple): def lastName (personTuple):

return personTuple[1l] return personTuple[0].split()[-1]
>>> age(('Janet Doe', 25)) >>> lastName(('Bob Miller', 31))
25 ‘Miller'

To notice:

In [19]: sorted(people, key=age) The parameter key is

Out[19]: [(Ed Smith', 17), assigned as a value a
('Mary Beth Johnson', 18), function name. While usually
('Janet Doe', 25), age and lastName will be
('Bob Miller', 31)] invoking a function, here

they are used as values (no

In [20]: sorted(people, key=lastName) parentheses). Functions in

Out[20]: [('Janet Doe', 25), Python are values just like
('Mary Beth Johnson', 18), numbers and strings. We use
('Bob Miller', 31) names to refer to these
('Ed Smith', 17)] values.

Real-world data 20-12

Function names refer to function values

personTuple

age >
/ return personTuple[1]
boo |]
lastName > personTuple
/ return personTuple[0].split()[-1]
foo |]
Functions in Python are In [29]: age

values. Their names point
to a place in memory

where the function values
are stored, as the In [30]: lastName
diagrams above show.

Out[30]: <function __main__.lastName(personTuple)>

We can create two variables boo and
foo, assign to them the function
values, and use them as aliases for
calling the two functions. See the
examples below.

In [31]: boo = age
boo(('Janet Doe', 25))

Out[31]: 25

In [32]: foo = lastName
foo(('Ed Smith', 17))

Out[32]: 'Smith'

Out[29]: <function __main__.age(personTuple)>

Real-wotld data 20-13

Breaking ties with key functions

The people2 list has many ambiguities due to first names, last names, and ages
that are the same:

. people2 = [('Ed Jones’', 18), ('Ana Doe', 25), ('Ed Doe’, 18),
| ('Bob Doe', 25), ('Ana Jones', 18)]

We define ageLastFirst to be a key function that will first sort by age, then
by last name (if ages are equal), then by first name (if age and last name are equal.)

———

. def ageLastFirst (person):

return (age(person), lastName(person), firstName(person))

In [21]: sorted(people2, key=agelLastFirst)

Out[21]: [('Ed Doe', 18), Note:
('Ana Jones', 18), The functions age an-d |
lastName were defined in
('Ed Jones', 18), Slide 12, the function
('Ana Doe', 25), firstName is an exercise in
the Notebook.
('Bob Doe', 25)]

Real-wotld data 20-14

Mutating list methods

for sorting

Concepts in this slide:
Two new list methods: sort
and reverse. They mutate
the original list.

Lists have two methods for sorting. These methods mutate the
original list. They are sort and reverse.

In [22]:
In [23]:
In [24]:
Out[24]:

In [25]:
In [26]:
In [27]:
Out[27]:

In [28]:
In [29]:
In [30]:
Out[30]:

numbers

[35, -2, 17, -9, 0O, 12, 19]

numbers.sort() # Mutates list; nothing is returned

numbers
[_91 _21

numbers2

numbers?2.

numbers?2
[19, 12,

numbers2

numbers?2
[35, 19,

.sort ()
numbers?2.

0, 12, 17, 19, 35]

= [35, -2, 17, -9, O, 12, 19]

reverse () # Mutates list; nothing is returned

o, -9, 17, -2, 35] # no sorting
Note:

The method sort similarly to
sorted takes the parameters
key and reverse as needed.

reverse ()

17, 12, O, _2/ _9]

Real-wotld data 20-15

Can dictionaries be sorted? Explain the outputs!

In [31]: fruitColors = {"banana": "yellow", "kiwi'":
"green", "grapes': "purple", "apple”": "red", "lemon":
"yellow", "pomegranate": "red"}

In [32]: sorted(fruitColors)

Out[32]: ['apple’', 'banana’, 'grapes’', 'kiwi', 'lemon'’,
'pomegranate’]

In [33]: sorted(fruitColors.keys())

Out[33]: ['apple’', 'banana’, 'grapes’', 'kiwi', 'lemon'’,
'pomegranate’]

In [34]: sorted(fruitColors.values())

red', 'red', 'yellow',

Out[34]: ['green’', 'purple',
'yvellow']
In [35]: sorted(fruitColors.items())
Out[35]: [('apple’', 'red'), ('banana’, 'yellow'),
('grapes’', 'purple’'), ('kiwi', 'green’'), ('lemon’',
'yvellow'), ('pomegranate’', 'red')]

Real-world data 20-16

Sort a list of dictionaries

In [36]: peopleDctlList = [{ 'name':'Mary Beth Johnson', 'age': 18},
{'name':'Ed Smith', 'age': 17},
{'name': 'Janet Doe', 'age': 25},
{'name':'Bob Miller', 'age': 31}]

In [37]: sorted(peopleDctList)

Traceback (most recent call last):

File "<pyshell>", line 1, in <module>
TypeError: '<' not supported between instances of 'dict' and 'dict'

def byAge(personDct):
return personDct['age']

In [38]: sorted(peopleDctList, key=byAge, reverse=True)
Out[38]: [{'name': 'Bob Miller', 'age': 31},
{ 'name': 'Janet Doe', 'age': 25},
{ 'name': 'Mary Beth Johnson', 'age': 18},
{'name': 'Ed Smith', 'age': 17}]

Real-world data 20-17

w' m w N’i’ - W'i‘ﬂ
i .41 §
Www!m 3..1[SEHE 4 i

M Census 2020 rww@

PO AR

mw‘l'hﬁw"'ﬁ'. W 4.

Real-world data 20-18

US States and Capitals:

State
Alabama
Alaska
Arizona
Arkansas
California

N oo o AW =

Colorado

Some questions to answer with our data:

AN

B c
StatePop Abbrev.
4921532 AL

731158 AK
7421401 AZ
3030522 AR

39368078 CA
5807719 CO

D
Capital
Montgomery
Juneau
Phoenix
Little Rock
Sacramento
Denver

Doing more with our data

E
CapitalPop
198525
32113

1680992
197312
513624 Partial screenshot of the us-states-more.csv file,
727211 viewed with the Google Spreadsheet editor.

Which are the most populated states? Rank the data in that order.

Which are the least populated states? Rank the data in that order.

Which state capitals are the most populated? Rank the data in that order.
Which state capitals are the least populated? Rank the data in that order.
What percentage of each state’s population lives in the state capital? Rank

the data by that percentage from the largest to the smallest.

Real-wotld data 20-19

Questions 1 & 2: Sort by US state population

How to implement the solution with Python code:

1. Read the content of the CSV file us-states-more.csv using
csv.DictReader, which returns a list of dictionaries.

2. Create a helper function byStatePop, which, given a dictionary with state data (one row
from our file), returns the appropriate value. Remember that all values in the dictionary
are strings, because they come from the CSV file.

3. Apply the sorted function to the list of dictionaries of state data, using the key
parameter with the function byStatePop.

4. Look at the results, in which way are they sorted?
5. Include the function parameter reverse to change the order of sorting.

6. Use f-string formatting to print out top six results as shown below.

Top six most populated US states: Top six least populated US states:
CA — 39,368,078 wy -> 582,328
™X —> 29,360,759 VT —> 623,347
FL —> 21,733,312 AK —> 731,158
NY —> 19,336,776 ND —> 765,309
PA —> 12,783,254 SD —> 892,717
IL —> 12,587,530 DE —> 986,809

Real-wotld data 20-20

Questions 3 &4: Sort by capital population

How to implement the solution with Python code:

Follow the steps from the previous slide, but create appropriate functions to use with the
parameter key for sorted. Try to come as close as possible to these outputs, but don’t worry
if you cannot. These outputs use some special f-string features for formatting.

Top six most populated US state capitals:

Phoenix (AZ) -> 1,680,992
Austin (TX) - 978,908
Columbus (OH) —> 898,553
Indianapolis (IN) -—> 876,384
Denver (CO) —> 727,211
Boston (MA) —> 692,600

Top six least populated US state capitals:

Montpelier (VT) - 7,855
Pierre (SD) —> 13,646
Augusta (ME) - 18,681
Frankfort (KY) —> 27,679
Juneau (AK) —> 32,113
Helena (MT) -> 32,315

Real-world data 20-21

Questions 5: Sort by percentage

How to implement the solution with Python code:

This will be similar to the two previous slides, by you’ll have to create a helper function,
byPercentage, which can calculate the percentage of people living in the capital of the
state. This function will be used by the sorted function, as well as by the f-string. Try to
come close to this output, but do not worry if you cannot achieve it yet.

Top six US states with the largest population percentage living in the capital:

Hawaii 24.52% of population lives in the capital, Honolulu.
Arizona 22.65% of population lives in the capital, Phoenix.

Rhode Island 17.02% of population lives in the capital, Providence.
Oklahoma 16.46% of population lives in the capital, Oklahoma City.
Nebraska 14.92% of population lives in the capital, Lincoln.
Indiana 12.97% of population lives in the capital, Indianapolis.

Real-world data 20-22

—_

Test your knowledge

What 1s the output when we apply the function sorted on
a) alist,
b) a string,
¢ atuple, or
d) adictionary?

What are some differences between the built-in function sorted and the list
method sort?

In this lecture, we saw different invocations for the function sorted. With one
argument, with two, and even three. When we used more than one argument, we
provided the parameter name as well, for example, reverse=True or
key=age. Speculate on why we needed to do that.

What do we need to do in order to sort a list of dictionaries? Why 1s that?

What are some other questions that you could answer with the Census data. Can
you write the Python code to answer them? Try it out and let us know what you
did. We might add that in our material for future semesters.

Real-wotld data 20-23

