
CS111 Computer Programming

Department of  Computer Science
Wellesley College

Introduction to the 
Python language

Python Intro Overview

o Values: 10 (integer), 
          3.1415 (decimal number or float), 
          'wellesley' (text or string)

o Types: numbers and text: int, float, str
         type(10)

                        type('wellesley') 

o Operators:    +    -   *  /   %   =

o Expressions: (they always produce a value as a result)
  'abc' + 'def’ -> 'abcdef'

Knowing the type of  a 
value allows us to choose 
the right operator when 
creating expressions.

2Python Intro

3
12
12
19.278
14
20
2.75
2
3
1.6
13.0
5.0
2.0
0.5

Simple Expressions:
Python as calculator

1+2
3*4
3 * 4  
3.4 * 5.67 
2 + 3 * 4 
(2 + 3) * 4 
11 / 4 
11 // 4 
11 % 4 
5 - 3.4
3.25 * 4 
11.0 // 2
5 // 2.25
5 % 2.25

Input 
Expressions
In [...]

Output 
Values
Out […]

Concepts in this slide: 
numerical values, 
math operators, 
expressions.

3Python Intro

# Spaces don't matter
# Floating point (decimal) operations
# Precedence: * binds more tightly than +
# Overriding precedence with parentheses
# Floating point (decimal) division
# Integer division
# Remainder (often called modulus)

# output is float if  at least one input is float

'CS111'
'rocks!'

'You say "Hi!"'
"No, I didn't"

'CS111 rocks!'
'1234'
127
TypeError
'123123123123'
TypeError

Strings and concatenation

"CS111"
'rocks!'

'You say "Hi!"' 
"No, I didn't"

"CS111 " + 'rocks!'
'123' + '4'
123 + 4
'123' + 4
'123' * 4
'123' * '4' 

In [...] Out […]

Concepts in this slide: 
string values, 
string operators, 
TypeError

4Python Intro

A string is just a sequence of characters that we write between a pair of double 
quotes or a pair of single quotes. Strings are usually displayed with single quotes. 
The same string value is created regardless of which quotes are used. 

# Characters in a string
# can include spaces,
# punctuation, quotes

# String concatenation
# Strings and numbers 
# are very different! 

# Repeated concatenation
# Can’t concatenate strings & num.



Memory Diagram Model: 
Variable as a Box

o A variable is a way to remember a value for later in the computer’s memory.
o A variable is created by an assignment statement, whose form is 
      varName = expression
   Example: ans = 42 # ans is the varName, 42 is the expression saved in ans

This line of code is executed in two steps:
1. Evaluate expression to its value val
2. If there is no variable box already labeled with varName, create a new box 

labeled with varName and store val in it; otherwise, change the contents of 
the existing box labeled varName to val .

Concepts in this slide: 
variables, 
assignment statement,
memory diagram model,
NameError

5Python Intro

ans

Memory diagram

42

Memory Diagram Model: 
Variable as a Box

o How does the memory diagram change if we evaluate the following 
expression?

o The expression checks the most recent val of ans (42), re-
evaluates the new expression based on that value, and reassigns the 
value of ans accordingly. 

o ans = 2*42+27 
o ans = 111

6Python Intro

ans = 2*ans+27 

ans 111

Variable summary

A variable names a value that we want to use later in a program. 

In the memory diagram model, an assignment statement var = exp 
stores the value of exp  in a box labeled by the variable name. 

Later assignments can change the value in a variable box. 

Note: The symbol = is pronounced “gets”, not “equals”!

7Python Intro

In [...] Memory 
Diagram

Out […] Notes

fav = 17 Assignment statements makes 
box, no output

fav 17 Returns current contents of fav

fav + fav 34 The contents of fav are 
unchanged

lucky = 8 Makes new box, has no output

fav + lucky 25 Variable contents unchanged

aSum = fav + lucky Makes new box, has no output

aSum * aSum 625 Variable contents unchanged

Variable Examples

fav 17

lucky 8

Concepts in this slide: 
variables, 
assignment statement, 
memory

8Python Intro

aSum 25



In [...] Memory 
Diagram

Out […] Notes

fav = 11 Change contents 
of fav box to 11

fav = fav - lucky Change contents 
of fav box to 3

name = 'CS111' Makes new box 
containing string. 
Strings are drawn 
*outside* box with 
arrow pointing to 
them (b/c they’re 
often “too big” to fit 
inside box 

name*fav 'CS111CS111CS111' string*int will 
repeat the string 
int # of times

Variable Examples

fav 11

Concepts in this slide: 
variables, 
assignment statement, 
memory

9Python Intro

name

'CS111'

How does the memory diagram change when we change the values 
of our existing variables? How are strings stored in memory?

fav 3

Built-in functions: 

10Python Intro

Built-in 
function

Result

max Returns the largest item in an iterable (An iterable is an object we can 
loop over, like a list of  numbers. We will learn about them soon!)

min Returns the smallest item in an iterable
id Returns memory address of  a value
type Returns the type of  a value
len Returns the length of  a sequence value (strings are an example)
str Converts and returns the input as a string
int Converts and returns the input as an integer number
float Converts and returns the input as a floating point number
round Rounds a number to nearest integer or decimal point
print Prints a specified message on the screen/output device,

and returns the None value. 
input Asks user for input, converts input to a string, returns the string

Built-in functions: 
max and min

min(7, 3)
max(7, 3)
min(7, 3, 2, 8.19) 
max(7, 3, 2, 8.19) 
smallest = min(-5, 2)       
largest = max(-3.4, -10)      
max(smallest, largest, -1)

3
7
2
8.19

-1

Python has many built-in functions that we can use. Built-in functions and user-
defined variable and function names names are highlighted with different colors in 
both Thonny and Jupyter Notebooks.

In [...] Out […]

The inputs to a function are called its arguments and the function is said to be 
called on its arguments.  In Python, the arguments in a function call are delimited 
by parentheses and separated by commas.

Concepts in this slide: 
built-in functions, 
arguments,
function calls.

11Python Intro

# can take any num. of arguments

# smallest gets -5

# largest gets -3.4

Understanding variable and 
function names

One value can have multiple names. These names refer to the same value in the 
computer memory. See the examples below for variables and functions.

Concepts in this slide: 
Values can have multiple 
names. Functions are 
also values.

12Python Intro

>>> oneValue = 'abc’

>>> otherValue = oneValue

>>> oneValue 
'abc’

>>> otherValue 
'abc'

oneValue

Memory diagram

'abc'

otherValue

>>> max
<built-in function max>

>>> myMaxFunction = max

>>> max(10,100)
100

>>> myMaxFunction(10,100)
100

Memory diagram

max

myMaxFunction

built-in
function

max

Functions are 
values. 

Just like 
numbers & 

strings 



Built-in functions: id
Concepts in this slide: 
Values can have multiple 
names. Functions are 
also values.

13Python Intro

Built-in function id: 
This function 
displays the memory 
address where a 
value is stored.
 
Different names can 
refer to the same 
value in memory.

>>> id(oneValue)
4526040688

>>> id(otherValue)
4526040688

>>> id(max)
4525077120

>>> id(myMaxFunction)
4525077120

Built-in functions: type

type(123)
type(3.141)
type(4 + 5.0)
type('CS111')
type('111')
type(11/4)
type(11//4)
type(11%4)
type(11.0%4)
type(max(7, 3.4))
x = min(7, 3.4)
type(x)
type('Hi,' + 'you!')
type(max)
type(type(111))

int
float
float
str
str
float
int
int
float
int

float
str
builtin_function_or_method
type # Special type for types!

In [...] Out […]

Each Python value has a type. It can be queried with the built-in type function. 
Types are special kinds of values that display as <class 'typeName'> Knowing the 
type of a value is important for reasoning about expressions containing the value. 

Concepts in this slide: 
types, 
the function type.

# x gets 3.4

14Python Intro

Jupyter notebooks display these 
type names. Thonny actually 
displays <class 'int'> , 
<class 'float'> , etc., but 
we’ll often abbreviate these 
using the Jupyter notebook 
types int, float, etc.

Using type with different values

Below are some examples of using type in Thonny, with different values:

15Python Intro

Functions are values 
with this type

Other types we will 
learn about later in 
the semester

Concepts in this slide: 
Every value in Python 
has a type, which can be 
queried with type. Built-in functions: len

len('CS111')
len('CS111 rocks!')
len('com' + 'puter')
course = 'computer programming'
len(course)
len(111)
len('111') 
len(3.141)
len('3.141')

5
12
8

20
TypeError
3
TypeError
5

When applied to a string, the built-in len function returns the 
number of characters in the string. 

len raises a TypeError if used on values (like numbers) that are not sequences.
(We’ll learn about sequences later in the course.)

In [...] Out […]

Concepts in this slide: 
length of a string, 
the function len,
TypeError

16Python Intro



Built-in functions: str

str('CS111')

str(17)

str(4.0)

'CS' + 111

'CS' + str(111)

len(str(111))

len(str(min(111, 42)))

'CS111'

'17'

'4.0'

 TypeError

'CS111'

3

2

The str built-in function returns a string representation of  its argument. 
It is used to create string values from ints and floats (and other types of values 
we will meet later) to use in expressions with other string values.

In [...] Out […]

Concepts in this slide:
the str function

17Python Intro

Built-in functions: int

int('42')
int('-273')
123 + '42'
123 + int('42')
int('3.141')
int('five')
int(3.141)   
int(98.6)   
int(-2.978)   
int(42) 
int(-273)   
  

42
-273
TypeError
165
ValueError
ValueError
3
98
-2
42
-273

o When given a string that’s a sequence of digits, optionally
 preceded by +/-,  int returns the corresponding integer. On any other string
it raises a ValueError (correct type, but wrong value of that type).  

o When given a float, int return the integer the results by truncating it toward zero.

o When given an integer, int returns that integer. 

In [...] Out […]

Concepts in this slide:
int function,
TypeError,
ValueError.

# strings are not sequence 
# of chars denoting integer

# Truncate floats toward 0

18Python Intro

Built-in functions: float

float('3.141')

float('-273.15')

float('3')

float('3.1.4')

float('pi')

float(42)   

float(98.6)   

3.141

-273.15

3.0

ValueError

ValueError

42.0

98.6

o When given a string that’s a sequence of digits, optionally preceded by +/-, 
and optionally including one decimal point, float returns the corresponding 
floating point number. On any other string it raises a ValueError.

o When given an integer, float converts it to floating point number.

o When given a floating point number, float returns that number. 

In [...] Out […]

Concepts in this slide:
float function,
ValueError

19Python Intro

Oddities of floating point numbers

2.1 – 2.0

2.2 – 2.0

2.3 – 2.0

1.3 – 1.0

100.3 - 100.0

10.0/3.0

1.414*(3.14159/1.414)

0.10000000000000009

0.20000000000000018

0.2999999999999998

0.30000000000000004

0.29999999999999716

3.3333333333333335

3.1415900000000003

In computer languages, floating point numbers 
(numbers with decimal points) don’t always behave like you might expect from 
mathematics. This is a consequence of their fixed-sized internal representations, 
which permit only approximations in many cases.(You can learn about such 
representations in CS240 Fundamentals of Computer Systems.) 

In [...] Out […]

20Python Intro

Concepts in this slide:
floating point numbers 
are only approximations, 
so don’t always behave 
exactly like math



Built-in functions: round

round(3.14156) 
round(98.6) 
round(-98.6) 
round(3.5) 
round(4.5) 
round(2.718, 2)
round(2.718, 1)
round(2.718, 0)
round(1.3 - 1.0, 1)
round(2.3 - 2.0, 1)
 
 

3
99
-99
4
5
2.72
2.7
3.0
0.3
0.3

o When given one numeric argument, round returns the integer it’s closest to. 
o When given two arguments (a numeric argument and an integer number of 

decimal places), round returns floating point result of rounding the first 
argument to the number of places specified by the second.

o In other cases, round raises a TypeError

In [...] Out […]

Concepts in this slide:
the round function,
called with varying 
number of arguments.

21Python Intro

# Compare to previous slide

# always rounds up for 0.5

Built-in functions: print

print(7)

print('CS111')

print(len(str('CS111')) * 
min(17,3))

college = 'Wellesley'
print('I go to ' + college)

dollars = 10
print('The movie costs $' 
       + str(dollars) + '.')

7

CS111

15

I go to Wellesley

The movie costs $10.

Input statements
In [...]

Characters displayed in 
console (*not* the output 
value of the expression!)

print displays a character-based representation of its argument(s) on the screen 
and returns a special None value, which is not displayed in Thonny or Jupyter.
Note that print also does not display any quotation marks for strings. 

Concepts in this slide:
print function

22Python Intro

The newline character '\n' 

23Python Intro

'\n' is a single special newline character. Printing it causes the console 
to shift to the next line. 

Concepts in this slide:
The '\n’ newline 
character. 

In [...] Console

print('one\ntwo\nthree') one
two
three

print with multiple arguments 

24Python Intro

When print is given more than one argument, it prints all arguments, separated 
by one space by default.  This is helpful for avoiding concatenating the parts of the 
printed string using + and using str to convert nonstrings to strings. 

Concepts in this slide:
print can take more 
than one argument

In [...] Console

print(6,'*',7,'=',6*7) 6 * 7 = 42

# print with one argument is much
# more complicated in this example! 
print(str(6)+' * '+str(7)+' = '+str(6*7)) 6 * 7 = 42



print with the sep 
keyword argument 

25Python Intro

print can take an optional so-called keyword argument of the form sep=stringValue 
that uses stringValue to replace the default space string between multiple values. 

Concepts in this slide:
The optional sep keyword 
argument overrides the 
default space between values

In [...] Console

print(6,'*',7,'=',6*7) 6 * 7 = 42

# replace space by $ 
print(6,'*',7,'=',6*7,sep='$') 6$*$7$=$42

# replace space by two spaces 
print(6,'*',7,'=',6*7,sep='  ') 6  *  7  =  42

# replace space by zero spaces 
print(6, '*',7,'=',6*7,sep='') 6*7=42

# replace space by newline 
print(6,'*',7,'=',6*7,sep='\n') 6

*
7
=
42

print returns None! 

26Python Intro

In addition to printing characters in the console, print also returns the special
value None. Confusingly, Thonny and Jupyter notebooks do not explicitly display 
this None value, but there are still ways to see that it’s really there. 

Concepts in this slide:
The optional sep keyword 
argument overrides the 
default space between values

In [1]: str(print('Hi!'))
         Hi! # printed by print
Out [1]: 'None' # string value returned by str

 In [2]: print(print(6*7))
         42 # printed by 2nd print
         None # printed by 1st print
         # No Out [2] shown when result is None

 In [3]: type(print(print('CS'),print(111))) 
         CS # printed by 2nd print
         111 # printed by 3rd print
         None None # printed by 1st print
Out [3]: NoneType # The type of None is NoneType

Complex Expression Evaluation

str((3 + 4) * len('C' + 'S' + str(max(110, 111))))

111

An expression is a programming language phrase 
that denotes a value. Smaller sub-expressions can be combined 
to form arbitrarily large expressions.

Complex expressions are evaluated from “inside out”, first finding the value of 
smaller expressions, and then combining those to yield the values of larger 
expressions. See how the expression below evaluates to '35': 

Concepts in this slide:
complex expressions ;
subexpressions; 
expression evaluation

27Python Intro

'111'

'CS111'

'CS'7

5

35

'35'

# str(111)

# 'CS' + '111'

# len('CS111')

# 7 * 5

# str(35)

In [4]: print('one\ntwo\three')
one
two
three

In [5]: print('one', 'two', 'three’, sep='\n')
one
two
three

In [6]: str(print(print('CS'), print('CS')))
CS # printed by 2nd print
111 # printed by 3rd print.
None None # printed by 1st print; shows that print returns None 

Out [6]: 'None' # result of str; shows that print returns None 
 

More print examples

28Python Intro

# '\n' is a single special 
# newline character. 
# Printing it causes the 
# display to shift to the 
# next line.

# Like previous example, 
# but use sep keyword arg 
# for newlines

Concepts in this slide:
The '\n’ newline 
character ; print returns 
the None value, which is 
normally hidden. 



In [7]: input('Enter your name: ')
Enter your name: 

Out [7]: 'Olivia Rodrigo'

Built-in functions: input

input displays its single argument as a prompt on the screen and waits for the user 
to input text, followed by Enter/Return. It returns the entered value as a string.

Brown text is prompt.

Magenta text is entered by user.

Concepts in this slide:
The input function; 
converting from string 
returned by input.

29Python Intro

Olivia Rodrigo

In [8]: age = input('Enter your age: ')  
Enter your age:

In [9]: age 
Out [9]: '20'

In [10]: age + 4
TypeError

Built-in functions: input
Concepts in this slide:
The input function; 
converting from string 
returned by input.

30Python Intro

No output from assignment.

Value returned by input is always a string. 
Convert it to a numerical type when needed. 

Tried to add a string and a float.

20

In [11]: age = float(input('Enter your age: '))
Enter your age: 

In [12]: age + 4
Out [12]: 22.0

Built-in functions: input
Concepts in this slide:
The input function; 
converting from string 
returned by input.

31Python Intro

Example of  nested function calls.

age contains float('18'), which is 18.0 
and 18.0 + 4 is 22.0

18

Expressions         vs.                Statements
Phrases that produce a value. E.g. :

10
10 * 20 – 100/25
max(10, 20)
int("100") + 200
fav
fav + 3
"pie" + " in the sky"

Expressions are composed out of 
any combination of values, variables 
operations, and function calls.

Phrases that perform an action / 
change the state of the program 
(can be visible, invisible, or both):

print(10)
age = 19
teleport(0, 150)

Statements may contain expressions, 
which are evaluated before the action is 
performed.

print('She is ' + str(age) 
+ ' years old.’)

We’ll consider expressions that return a 
None value to be kinds of statements. 
Recall that None is not normally displayed 
in Thonny or Jupyter.

Concepts in this slide:
Expressions, statements

32Python Intro



Expressions, statements, and 
console printing in Jupyter

Notice the Out[]field for the
result when the input is an
expression.

Concepts in this slide:
Jupyter displays Out[] for 
expressions, but not statements. 
Non-Out[] chars come from print

33Python Intro

Expressions, statements, and 
console printing in Jupyter

The print function returns a 
None value that is not displayed 
as an output in Jupyter. 
Any function or method call 
that returns None is treated as a 
statement in Python.

Concepts in this slide:
Jupyter displays Out[] for 
expressions, but not statements. 
Non-Out[] chars come from print

34Python Intro

An assignment is a statement 
without any outputs

Expressions, statements, and 
console printing in Jupyter

Concepts in this slide:
Jupyter displays Out[] for 
expressions, but not statements. 
Non-Out[] chars come from print

35Python Intro

These are characters displayed by 
print in the “console”, which is 
interleaved with In[]/Out[] 

Expressions, statements, and 
console printing in Thonny

Notice no Out[]field for the
result when the input is an
expression for Thonny.  Text is 
bigger and has no indent!

Concepts in this slide:
Thonny displays expressions, but 
not statements.  Expressions are 
distinguished from printed output 
by text size and indentation.

36Python Intro



Expressions, statements, and 
console printing in Thonny

The print function returns a 
None value that is not displayed 
as an output in Thonny. 
The text is displayed as smaller 
and indented!

Concepts in this slide:
Thonny displays expressions, but 
not statements.  Expressions are 
distinguished from printed output 
by text size and indentation.

37Python Intro

An assignment is a statement 
without any outputs

Expressions, statements, and 
console printing in Thonny

Concepts in this slide:
Thonny displays expressions, but 
not statements.  Expressions are 
distinguished from printed output 
by text size and indentation.

38Python Intro

These are characters displayed by 
print in the “console”, which is 
interleaved with expressions

Putting Python code in a .py file

Rather than interactively entering code into the Python Shell, we can enter it in the 
Editor Pane, where we can edit it and save it away as a file with the .py extension (a 
Python program). Here is a nameage.py program. Lines beginning with # are comments 
We run the program by pressing the triangular “run”/play button. 

Concepts in this slide:
Editor pane. .py Python 
program file, running a 
program.

39Python Intro

Code Styling Advice

1. Lines should not be longer than 80 characters
2. Give meaningful names to variables.
3. Use space around operators (e.g, =, + )
4. Use comments at the top of  file
5. Organize code in “blocks” of  related statements preceded by comments for block. 
6. Use space between blocks to improve readability.
7. For CS111 coding style guidelines, see http://cs111.wellesley.edu/reference/styleguide

Concepts in this slide:
the 80-character limit,
coding advice.

40Python Intro



Error messages in Python
Type Errors                           

'111' + 5 TypeError: cannot concatenate 'str' and 'int' values

len(111) TypeError: object of  type 'int' has no len()

Value Errors                           
int('3.142') ValueError: invalid literal for int() with base 10: '3.142'
float('pi') ValueError: could not convert string to float: pi

Name Errors                           
CS + '111' NameError: name 'CS' is not defined

Syntax Errors                           A syntax error indicates a phrase is not well formed according to 
the rules of  the Python language. E.g. a number can’t be added to 
a statement, and variable names can’t begin with digits. 

Concepts in this slide:
Error types,
Error messages.

41Python Intro

1 + (ans=42)
1 + (ans=42)

^
SyntaxError: invalid syntax 

2ndValue = 25  
2ndValue = 25           
^
SyntaxError: invalid syntax

Test your knowledge
1. Create simple expressions that combine values of  different types and 

math operators. 
2. Which operators can be used with string values? Give examples of  

expressions involving them. What happens when you use other operators?
3. Write a few assignment statements, using as assigned values either 

literals or expressions. Experiment with different variable names that 
start with different characters to learn what is allowed and what not.

4. Perform different function calls of  the built-in functions: max, min, 
id, type, len, str, int, float, round.

5. Create complex expressions that combine variables, function calls, 
operators, and literal values.

6. Use the function print to display the result of  expressions involving 
string and numerical values.

7. Write simple examples that use input to collect values from a user and 
use them in simple expressions. Remember to convert numerical values.

8. Create situations that raise different kinds of  errors: TypeError, 
ValueError, NameError, and SyntaxError.

42Python Intro


