Introduction to the
Python language

Python Intro Overview

o Values: 10 (integer),
3.1415 (decimal number or float),
'wellesley' (text or string)

o Types: numbers and text: int, float, str Knowingthe typeof a
value allows us to choose

type (10) the right operator when
type ('wellesley') creating expressions.
CS111 Computer Programming o Operators: + - * / % =
Department of Computer Science . .
Wellesley College o Expressions: (they always produce a value as a result)
'abc' + 'def’ -> 'abcdef'
Python Intro 2
S . 1 E . . Concepts in this slide: . . Concepts in this slide:
mple ExXpressions: numerical values, Strings and concatenation string values,
math operators, string operators,
Python as calculator expressions. TypeError
Input . Output A string is just a sequence of characters that we write between a pair of double
Expressions Values quotes of a pair of single quotes. Strings are usually displayed with single quotes.
In[.] Out[...] The same string value is created regardless of which quotes are used.
1+2 3
3*4 12 In[...] Out [...]
* . "t me
2 4 f 5.67 152) 278 Z;lecés don't m‘zter' 1 i restiL osii
. . . oating point (decimal) operations 'rocks ! 'rocks!
2 +3 * 4 14 # Precedence: * binds more tightly than + . .
. o) . "You say "Hi!"' 'You say "Hi!"' # Characters in a string
(2 + 3) 4 20 # Overriding precedence with parentheses Y : Yy : # can include spaces
11 / 4 2.75 # Floating point (decimal) division "No, I didn't" "No, I didn't" # punctuation, quotes
11 // 4 2 # Integer division "CcS111 " 4+ 'rocks!' 'CS111 rocks!' # String concatenation
11 % 4 3 # Remainder (often called modulus) 1123 4 14 11234 # Strings and numbers
5-3.4 1.6 123 + 4 127 # are very different!
3.25 * 4 13.0 '123' + 4 TypeError # Can’t concatenate strings & num.
11.0 // 2 5.0 # output is float if at least one input is float 11231 * 4 1123123123123 # Repeated concatenation
5 // 2.25 2.0 1123' * 14" TypeError
5 % 2.25 0.5 Python Intro 3 Python Intro 4

Concepts in this slide:

Memory Diagram Model: variables,
. assignment statement,
Variable as a Box memory diagram model,
NameError
o A variable is a way to remember a value for later in the computer’s memory.
o A variable is created by an assignment statement, whose form is
varName = expression
Example: ans = 42 # ansis the varName, 42 is the expression saved in ans
This line of code is executed in two steps:

1. Evaluate expression to its value val

2. If there is no variable box already labeled with varName, create a new box
labeled with varName and store val in it; otherwise, change the contents of
the existing box labeled varName to val.

Memory diagram

Python Intro 5

Memory Diagram Model:

Variable as a Box

o How does the memory diagram change if we evaluate the following

expression?

ans = 2*ans+27

o The expression checks the most recent val of ans (42), re-
evaluates the new expression based on that value, and reassigns the

value of ans accordingly.
2*42+27
111

o ans

o ans

Python Intro 6

Variable summary

A variable names a value that we want to use later in a program.

In the memory diagram model, an assignment statement var = exp
stores the value of exp in a box labeled by the variable name.

Later assignments can change the value in a variable box.

Note: The symbol = is pronounced “gets”, not “equals”!

Python Intro 7

Variable Examples

fav =

fq\
fav 17
fav + fav 34
lucky = 8
— lucl\y
fav + lucky 25

S = f + luck
a-um av ueky aSum

aSum * aSum 625

Concepts in this slide:
variables,

assignment statement,
memory

Assignment statements makes
box, no output

Returns current contents of fav

The contents of fav are
unchanged

Makes new box, has no output
Variable contents unchanged
Makes new box, has no output

Variable contents unchanged

Python Intro 8

Concepts in this slide:
Variable Examples variables,

assignment statement,
memory

How does the memory diagram change when we change the values
of our existing variables? How are strings stored in memory?

Built-in functions:

max Returns the largest item in an iterable (An iterable is an object we can
loop over, like a list of numbers. We will learn about them soon!)

min Returns the smallest item in an iterable
fav = 11 Change contents .
v fav of favgbox t0 11 id Returns memory address of a value
fav = fav - lucky f.{w Change contents type Returns the type of a value
ity o len Returns the length of a sequence value (strings are an example)
name = 'CSI111' Makes new box) i
containing string. str Converts and returns the input as a string
name Strings are drawn c : .
outside box with int Converts and returns the input as an integer number
'cs1il! tar:gﬂv(g?éqﬂggy,f_z float Converts and returns the input as a floating point number
i‘:]f;?é‘e"g’:xbign to fit round Rounds a number to nearest integer or decimal point
Eme Y Ea 'CS111CS111CS111' string*int wil print Prints a specified message on the screen/output device,
repeat the string and returns the None value.
int # of times -
input Asks user for input, converts input to a string, returns the string
Python Intro 9 Python Intro 10
. . . Concepts in this slide: . . Concepts in this slide:
Bu11t-11’1 funCthl’lS: built-in fu_nctjons’ Undel’standlng Varlable and Values can have multiple
. arguments, . names. Functions are
max and min function calls. function names also values.

Python has many built-in functions that we can use. Built-in functions and user-
defined variable and function names names are highlighted with different colors in
both Thonny and Jupyter Notebooks.

In [...] Out [...]

min(7, 3) 3

max (7, 3) 7

min(7, 3, 2, 8.19) 2 # can take any num. of arguments
max (7, 3, 2, 8.19) 8.19

smallest = min (-5, 2) # smallest gets -5
largest = max(-3.4, -10) # largest gets -3.4

max (smallest, largest, -1) -1
The inputs to a function are called its arguments and the function is said to be

called on its arguments. In Python, the arguments in a function call are delimited
by parentheses and separated by commas.

Python Intro 11

One value can have multiple names. These names refer to the same value in the
computer memory. See the examples below for variables and functions.

- >>> max
>>> oneValue = 'abc’ menmﬁa“ 4: <built-in function max>
values.
>>> otherValue = oneValue Just like >>> myMaxFunction = max
numbers &
>>> oneValue strings >>> max(10,100)
"abc’ 100
>>> otherValue >>> myMaxFunction(10,100)
"abc' 100
Memory diagram

Memory diagram
oneValue [:—)H ‘abc’
otherValue
myMaxFunction B/

Python Intro 12

Concepts in this slide:
Values can have multiple
names. Functions are

Built-in functions: id

also values.
Built-in function id:
This function
>>> id(oneValue) displays the memory >>> id(max)
4526040688 address where a 4525077120

value is stored.
>>> id(otherValue) >>> id(myMaxFunction)
4526040688 Different names can 4525077120

refer to the same

value in memory.

Concepts in this slide:

1141 1 . types,
Built-in functions: type e s

Each Python value has a type. It can be queried with the built-in type function.

Types are special kinds of values that display as <class ' typeName'> Knowing the
type of a value is important for reasoning about expressions containing the value.

In[...] Out [...]
type (123) int Jupyter notebooks display these
type (3.141) float type names. Thonny actually
type(4 + 5.0) float displays <class 'int'> ,
type('CsSlll’') str <class 'float'> , etc., but
type('111") str we’ll often abbreviate these
type (11/4) float using the Jupyter notebook
type (11//4) int types int, float, etc.
type (11%4) int
type (11.0%4) float
type (max (7, 3.4)) int
x = min(7, 3.4) # x gets 3.4
type (x) float
type('Hi,' + 'you!') str
type (max) builtin function_or method

type (type (111)) type # Special type for types!

Python Intro 13 Python Intro 14
Concepts in this slide: Concepts in this slide:
- 1 1 Every value in Python length of a string,
Using type with different values Frewveueniybon Built-in functions: len the function Len,

queried with type.

Below are some examples of using type in Thonny, with different values:

>>> type(10)
<class 'int'>
>>> type('abc')
<class 'str's>

>>> type(10/3)
<class 'float'>

>>> type(max)
<class 'builtin_function_or_method'> }

Functions are values
>>> type(len) with this type
<class 'builtin_function_or_method'>

>>> type(True)

<class 'bool'>

>>> type([1,2,31) Other types we will

<class 'list's> learn about later in

>>> type((10,5)) the semester
<class 'tuple'>

Python Intro 15

TypeError

When applied to a string, the built-in 1en function returns the
number of characters in the string.

len raises a TypeError if used on values (like numbers) that are not sequences.
(We’ll learn about sequences later in the course.)

In[...] Out[...]
len('CS111"') 5
len('CS111 rocks!') 12
len('com' + 'puter') 8
course = 'computer programming'
len (course) 20
len(111) TypeError
len('111") 3
len(3.141) TypeError
len('3.141") 5

Python Intro 16

Concepts in this slide:
the str function

Built-in functions: str

The str built-in function returns a string representation of its argument.

It is used to create string values from ints and £loats (and other types of values
we will meet later) to use in expressions with other string values.

In[...] Out [...]
str('Cs111l'") 'Cs11l’
str(17) 17!
str(4.0) '4.0'

'cs' + 111 TypeError
'CS' + str(11l1) 'Cs111’
len(str(111)) 3

len(str(min (111, 42))) 2

Python Intro 17

Concepts in this slide:

Built-in functions: int int function,
TypeError,

o When given a string that’s a sequence of digits, optionally ~ ValueError.
preceded by +/-, int returns the corresponding integer. On any other string
it raises a ValueError (correct type, but wrong value of that type).

o When given a float, int return the integer the results by truncating it toward zero.

o When given an integer, int returns that integer.

In [...] Out[...]

int('42") 42

int('-273") -273

123 + '42° TypeError

123 + int('42"') 165

int('3.141") ValueErro:i'r # strings are not sequence
int('five') ValueError # of chars denoting integer
int (3.141) 3

int (98.6) 98 # Truncate floats toward 0
int(-2.978) -2

int (42) 42

int (-273) -273 Python Intro 18

Concepts in this slide:
float function,
ValueError

Built-in functions: £float

o When given a string that’s a sequence of digits, optionally preceded by +/-,
and optionally including one decimal point, £1loat returns the corresponding
floating point number. On any other string it raises a ValueError.

o When given an integer, £1oat converts it to floating point number.

o When given a floating point number, £1loat returns that number.

In[...] Out[...]
float('3.141") 3.141
float('-273.15") -273.15
float('3") 3.0
float('3.1.4") ValueError
float('pi') ValueError
float (42) 42.0

float (98.6) 98.6

Python Intro 19

.. . . Concepts in this slide:
Oddities of floating point numbers floating point numbers

are only approximations,

so don’t always behave
. . exactly like math
In computer languages, floating point numbers

(numbers with decimal points) don’t always behave like you might expect from
mathematics. This is a consequence of their fixed-sized internal representations,
which permit only approximations in many cases.(You can learn about such
representations in CS240 Fundamentals of Computer Systems.)

In[...] Out [...]

2.1 -2.0 0.10000000000000009
2.2 -2.0 0.20000000000000018
2.3 -2.0 0.2999999999999998
1.3 -1.0 0.30000000000000004
100.3 - 100.0 0.29999999999999716
10.0/3.0 3.3333333333333335
1.414*(3.14159/1.414) 3.1415900000000003

Python Intro 20

Concepts in this slide: B llt in f n ti n pr:l.n t Concepts in this slide:
. . . . the round function, ult- unctions: print function
Built-in functions: round B e . o
number of arguments. print displays a character-based representation of its argument(s) on the screen
. . . . and returns a special None value, which is not displayed in Thonny or Jupyter.
o When given one numeric argument, round returns the integer it’s closest to.
i i) Note that print also does not display any quotation marks for strings.

o When given two arguments (a numeric argument and an integer number of . .
decimal places), round returns floating point result of rounding the first Input statements Sg:;i?ée(';?‘gt'fﬂllaeyggtmu t
argument to the number of places specified by the second. In[...] 1P

value of the expression!)

o In other cases, round raises a TypeError

print(7) 7
In [...] Out [...]

round (3.14156) 3 print ('CsS11ll') Cs1ll1

round(98.6) 99 print (len(str('CS111')) * 15

round(—98.6) -99 (17,3))

round (3.5) 4 ¥ a1 3 - 0 s

round(4.5) 5 aiways rounds up for H. college = 'Wellesley' I go to Wellesley

round(2.718, 2) 2.72 print('I go to ' + college)

round(2.718, 1) 2.7 dollars = 10 The movie costs $10.

round(2.718, 0) 3.0 print ('The movie costs $'

d(1.3 - 1.0, 1 0.3 U
round(1) # Compare to previous slide + (dollars) + '.')
round(2.3 - 2.0, 1) 0.3
Python Intro 21 Python Intro 22
Concepts in this slide: Concepts in this slide:
. The '\n’ newline : . . int can take more

The newline character ' \n' character print with multiple arguments {00 Careument

"\n' is a single special newline character. Printing it causes the console When print is given morte than one argument, it prints all arguments, separated

to shift to the next line. by one space by default. This is helpful for avoiding concatenating the parts of the

In[.] Console printed string using + and using str to convert nonstrings to strings.
print ('one\ntwo\nthree') one I Console

two n[..]

three
print(6,'*',7,'=",6%*7) 6 * 7 = 42
print with one argument is much
more complicated in this example!
print(str(6)+' * '+str(7)+' = "+str(6*7)) 6 * 7 = 42

Python Intro 23 Python Intro 24

. . Concepts in this slide:
pr int with the sep The optional sep keyword
argument overrides the
keyword ar g ument default space between values

print can take an optional so-called keyword argument of the form sep=stringl”alne
that uses sz7ingl alue to replace the default space string between multiple values.
In[.] Console
print(6,'*',7,'="',6%*7) 6 * 7 = 42

replace space by §$
print(6,'*',7,'=',6%7,sep="'8") 65*$75=542

replace space by two spaces
print(6,'*',7,'=',6*7,sep=" ') 6 * 7 = 42

replace space by zero spaces
print(6, '*',7,'=',6%*7,sep="") 6*7=42

replace space by newline

Concepts in this slide:

. The optional sep keyword
prlnt returns None! argument overrides the

default space between values
In addition to printing characters in the console, print also returns the special

value None. Confusingly, Thonny and Jupyter notebooks do not explicitly display
this None value, but there are still ways to see that it’s really there.

In [1]: str(print('Hi!'"))
Hi! # printed by print
Out [1]: 'None' # string value returned by str

In [2]: print(print(6*7))
42 # printed by 2°¢ print
None # printed by 15% print
No Out [2] shown when result is None

In [3]: type(print(print('CS') ,print(111)))

print(6,'*',7,'=',6*7,sep="'\n") 6 CS # printed by 27 print
* 111 # printed by 3% print
7 None None # printed by 15t print
= Out [3]: NoneType # The type of None is NoneType
42 Python Intro 25 Python Intro 26
Concepts in this slide: Concepts in this slide:
Comp lex EXPI‘CSSIOI’I Evaluation ggiiel;i;i’{ez}s{ﬁ)f:;s o More pr int examples Zl?aera}:?erl;l;vl"rihrﬁereturns
. . expression evaluation the None value, which is
An expression is a programming language phrase normally hidden.
that denotes a value. Smaller sub-expressions can be combined . Ny . .
to form arbitrarily large expressions. In [4]: print('one\ntwo\three') z \n is a single special
one newline character.
Complex expressions ate evaluated from “inside out”, first finding the value of two # Printing it causes the
smaller exptessions, and then combining those to yield the values of larger th # display to shift to the
ree # next line.

expressions. See how the expression below evaluates to '35":
str((3 + 4) * len('C' + 'S' + str(max (110, 111))))

7 'Cs’ 111
(J

Y
"111"' # str(111)
)

Y
'CS111' # 'Cs' + '111)'

Y
\ 5 # len('CS111') |
Y

\ 35 #7 *5 |

Y
'35' # str(35) Python Intro 27

In [5]: print('one', 'two', 'three’, sep='\n')
one # Like previous example,
but use sep keyword arg

two X
for newlines

three

In [6]: str(print(print('CS'), print('Cs')))

CS # printed by 27¢ print

111 # printed by 37¢ print.

None None # printed by 1% print; shows that print returns None

Out [6]: 'None' # result of str; shows that print returns None

Python Intro 28

Concepts in this slide:
The input function;
converting from string
returned by input.

Built-in functions: input
input displays its single argument as a prompt on the screen and waits for the user
to input text, followed by Enter/Return. It returns the entered value as a string.

In [7]: input('Enter your name: ')

Enter your name: Olivia Rodrigo <.__
A "~ Magenta text is entered by user.

I
I
I
I
Brown text is prompt.

Out [7]: 'Olivia Rodrigo'

Python Intro 29

Concepts in this slide:
The input function;
converting from string
returned by input.

Built-in functions: input

In [8]: age = input('Enter your age: ')
Enter your age:20

e mmmmmmmmmmmmmmmmm—mm—mm——=m s No output from assignment.
In [9]: age . .
Out [9]: '20" €- oo Value ret}lrned by inl?ut is always a string.

Convert it to a numerical type when needed.

In [10]: age + 4
TYPEError <---------------------------- Tried to add a string and a float.

Python Intro 30

Concepts in this slide:
The input function;
converting from string
returned by input.

Built-in functions: input

In [11]: age = float((input('Enter your age: '))

Enter your age: 18 TTe-alL

-~~~ Example of nested function calls.
In [12]: age + 4
Out [12]: 22.0

=

~
~

\\\ age contains £loat ('18'), which is 18.0
and 18.0 + 4is22.0

Python Intro 31

Concepts in this slide:
Expressions, statements
Expressions vs. Statements
Phrases that produce a value. E.g. : Phrases that petform an action /
change the state of the program
10 (can be visible, invisible, or both):
10 * 20 - 100/25 print (10)

max (10, 20)
int("100") + 200

fav

fav + 3

"pie" + " in the sky"

age = 19
teleport (0, 150)

Statements may contain expressions,
which are evaluated before the action is
performed.

print('She is ' + str(age)

Expressions are composed out of
+ ' years old.’)

any combination of values, variables

operations, and function calls. We’ll consider expressions that return a

None value to be kinds of statements.
Recall that None is not normally displayed
in Thonny or Jupyter. Python Intro 32

Expressions, statements, and
console printing in Jupyter

In [1]: max(10,20)

Concepts in this slide:

Jupyter displays out[] for
expressions, but not statements.
Non-Out[] chars come from print

Notice the Out [] field for the

OUt[1]: 20 e ——mmmm—m——— = m == — = _— result when the input is an

-
- //
-

-

In [2]: 10 +20 __ ==~
Out[2]: 30 «~—~ L
y

In [3]: message = "Welcome to CS, 411"
/

7

/
In [4]: message v

Out[4]: 'Welcome to CS 111’

In [5]: print(message)
Welcome to CS 111

In [6]: print(max(10,20))
20

In [7]: print(10 + 20)
30

expression.

Python Intro 33

Expressions, statements, and
console printing in Jupyter

In [1]: max(10,20)

Out[1]: 20

In [2]: 10 + 20

Out[2]: 30

In [3]: message = "Welcome to CS 111" w”

In [4]: message

Out[4]: 'Welcome to CS 111’
In [5]: print(message)« —--—~"~""7"7"" s
Welcome to CS 111 Paats
-~ s
In [61: print(max(10,20))“ -~
20 e

In [7]: print(10 + 20)°
30

Concepts in this slide:

Jupyter displays out[] for
expressions, but not statements.
Non-Out[] chars come from print

An assignment is a statement
without any outputs

The print function returns a
None value that is not displayed
as an output in Jupyter.

Any function or method call
that returns None is treated as a
statement in Python.

Python Intro 34

Expressions, statements, and
console printing in Jupyter

In [1]: max(10,20)

Out[1]: 20

In [2]: 10 + 20
Out[2]: 30

In [3]: message = "Welcome to CS 111"

In [4]: message
Out[4]: 'Welcome to CS 111’

In [5]: print(message)
Welcome to CS 111

~

In [6]: print(max(10, 20)3 Sso

Concepts in this slide:

Jupyter displays out[] for
expressions, but not statements.
Non-Out[] chars come from print

20 « - _ __ R

___________ T ~._ These are characters displayed by
In [7]: print(10 + 20) _ _ __ _ - -===="print in the “console”, which is
30 --"""" 77

interleaved with In[]/Out[]

Python Intro 35

Expressions, statements, and
console printing in Thonny

_——

>>> 10 + 20 _
30 -7 -7

>>> message = "Welcome to €S 111"
>>> message -7
'Welcome to CS 111«

>>> print(message)
Welcome to CS 111

>>> prinft(max(10, 20))
20

>>> print(10 + 20)
30

-
-
— -
- Phd
-
-

Concepts in this slide:

Thonny displays expressions, but
not statements. Expressions are
distinguished from printed output
by text size and indentation.

Notice no Out [] field for the
result when the input is an
expression for Thonny. Text is
bigger and has no indent!

Python Intro 36

Concepts in this slide:
Expressions, statements, and Thonny displays expressions, but

not statements. Expressions are

COHSOIC pfintin g in Thonny distinguished from printed output

by text size and indentation.

>>> max(10, 20)

20

>>> 10 + 20

30

>>> message = "Welcome to CS 111"« — - _ _ Anassignment is a statement
>>> message without any outputs

'Welcome to CS 111'

>>> print(message) « - _ _ The print function returns a

- None value that is not displayed
Welcome to CS 111 S~a_ 9
_ — — =7 as an output in Thonny.
. - - 9 9
>>> prirt(max(10, 20)) . - - - The text is displayed as smaller
20 oP< and indented!

=

>>> print(10 + 20) « -~
30

Python Intro 37

Concepts in this slide:
Expressions, statements, and Thonny displays expressions, but

not statements. Expressions are

console p rintin g in Thonny distinguished from printed output

by text size and indentation.

>>> max(10, 20)
20

>>> 10 + 20
30

>>> message = "Welcome to CS 111"
>>> message
'Welcome to CS 111'

>>> print(message)
Welcome to CS 111 w
~

>>> prinft(max(10, 20))~ o -

20 - o _ - RN
>>> print(10 + 20)" = - - _ BN
p () T ==___ ~_ Theseare characters displayed by
30 & = = = e —=

— === print in the “console”, which is
interleaved with expressions

Python Intro 38

Concepts in this slide:
Editor pane. .py Python
program file, running a,
program.

Putting Python code in a .py file

Rather than interactively entering code into the Python Shell, we can enter it in the
Editor Pane, where we can edit it and save it away as a file with the .py extension (a

Python program). Here is a nameage . py program. Lines beginning with # are comments

We run the program by pressing the triangular “run”/play button.

[JOX } 2| Thonny - /Users/ar i K py @ 8:10
D O % w

nameage.py

name = input("Enter your name: ")
8 age = int(input(“Enter your age: "))

12 print("Hello, " + name + ".")
13 print("In 4 years, you will be " + str(age + 4) + " years old."

Python Intro 39

Concepts in this slide:
the 80-character limit,

Code Styling Advice coding advice,

ece
= Ot @

| Thonny - /L i py @ 8:10

nameage.py

1

4

/ name = input("Enter your name: ")
8 age = int(input("Enter your age: "))
10
11
12 print("Hello, " + name + ".")
13 print("In 4 years, you will be " + str(age + 4) + " years old.")

Lines should not be longer than 80 characters

Give meaningful names to variables.

Use space around operators (e.g, =, +)

Use comments at the top of file

Organize code in “blocks” of related statements preceded by comments for block.
Use space between blocks to improve readability.

For CS111 coding style guidelines, see http://csl1l.wellesley.edu/reference/styleguide
Python Intro 40

NouA b=

Concepts in this slide:

1 Error types,
Error messages in Python Erron taooanges.
Type Errors
111" + 5 TypeError: cannot concatenate 'stt' and 'int' values

len(111) TypeError: object of type 'int' has no len()

Value Errors
int('3.142') vValueError: invalid literal for int() with base 10: '3.142'

float('pi'") ValueError: could not convert string to float: pi

Name Errors

csS + '111" NameError: name 'CS' is not defined
Syntax Errors A syntax error indicates a phrase is not well formed according to
the rules of the Python language. E.g. a number can’t be added to
a statement, and variable names can’t begin with digits.

1 + (ans=42) 2ndValue = 25
{1 + (ans=42) i 2ndvalue = 25

A A

SyntaxError: invalid syqtax Python Intro 41

Test your knowledge

1. Create simple expressions that combine values of different types and
math operators.

2. Which operators can be used with string values? Give examples of
expressions involving them. What happens when you use other operators?

3. Write a few assignment statements, using as assigned values either
literals or expressions. Experiment with different variable names that
start with different characters to learn what is allowed and what not.

4. Perform different function calls of the built-in functions: max, min,
id, type, len, str, int, float, round.

5. Create complex expressions that combine variables, function calls,
operators, and literal values.

6. Use the function print to display the result of expressions involving
string and numerical values.

7. Write simple examples that use input to collect values from a user and
use them in simple expressions. Remember to convert numerical values.

8. Create situations that raise different kinds of errors: TypeError,
ValueError, NameError, and SyntaxError.

Python Intro 42

