
CS111 Computer Programming

Department of Computer Science
Wellesley College

More Fruitful Recursion

Fruitful Spiraling

Recall the definition for having a turtle draw a spiral and return
to its original position and orientation:

def spiralBack(sideLen, angle, scaleFactor, minLength):
 """Draws a spiral based on the given parameters and
 brings the turtle back to its initial location and
 orientation."""
 if sideLen < minLength:
 pass
 else:

 fd(sideLen); lt(angle) # Put 2 stmts on 1 line with ;
 spiralBack(sideLen*scaleFactor, angle,

 scaleFactor, minLength)
 rt(angle); bk(sideLen)

How can we modify this function to return
 (1) the total length of lines in the spiral;
 (2) the number of lines in the spiral;
 (3) both of the above numbers in a pair?

2	More	Frui*ul	Recursion	

spiralLength(100, 90, 0.5, 5) è 193.75

spiralLength(120, 60, 0.5, 5) è 578.8893767467009

spiralLength(512, 90, 0.5, 5) è 1016

spiralLength

def spiralLength(sideLen, angle, scaleFactor, minLength)
 """Draws a spiral and returns the total length
 of the lines drawn."""
 if sideLen < minLength:
 return 0 # Length is 0 when no line drawn
 else:
 fd(sideLen); lt(angle)

 # Name the length returned by the recursive call
 subLen = spiralLength(sideLen*scaleFactor, angle,
 scaleFactor, minLength)
 rt(angle); bk(sideLen)
 return sideLen + subLen # Length of all lines in spiral

3	More	Frui*ul	Recursion	

spiralCount(100, 90, 0.5, 5) è 5

spiralTuple(120, 60, 0.5, 5) è 15

spiralTuple(512, 90, 0.5, 5) è 7

Exercise 1: spiralCount

def spiralCount(sideLen, angle, scaleFactor, minLength)
 """Draws a spiral and returns the total number
 of lines drawn. """
 if sideLen < minLength:
 return ?? # What goes here?
 else:
 fd(sideLen); lt(angle)
 subCount = spiralCount(sideLen*scaleFactor, angle,
 scaleFactor, minLength)
 rt(angle); bk(sideLen)
 return ?? # What goes here?

4	More	Frui*ul	Recursion	

spiralTuple(100, 90, 0.5, 5) è (193.75, 5)

spiralTuple(120, 60, 0.5, 5) è (578.8893767467009, 15)

spiralTuple(512, 90, 0.5, 5) è (1016, 7)

Exercise 2: spiralTuple

def spiralTuple(sideLen, angle, scaleFactor, minLength)
 """Draws a spiral and returns a pair of (1) the total length
 of the lines drawn and (2) the number of lines."""
 if sideLen < minLength:
 return ?? # What goes here?
 else:
 fd(sideLen); lt(angle)
 ?? = spiralTuple(sideLen*scaleFactor, angle,
 scaleFactor, minLength)
 rt(angle); bk(sideLen)
 return ?? # What goes here?

5	More	Frui*ul	Recursion	

Exercise 3: Fruitful Trees

6	

 def branchCount(levels, trunkLen, angle, shrinkFactor):
 """Draw a 2-branch tree recursively and returns a
 count of the branches.
 levels: number of branches on any path
 from the root to a leaf
 trunkLen: length of the base trunk of the tree
 angle: angle from the trunk for each subtree
 shrinkFactor: shrinking factor for each subtree
 """
 # your code here

As with spirals, we can return counts of the drawings we make
using fruitful recursion. Try this example below in the notebook
and check the notebook solution for answers.

More	Frui*ul	Recursion	

List of numbers from n down to 1

Define a function countDownList to return the list of numbers
from n down to 1

countDownList(0) à []
countDownList(5) à [5, 4, 3, 2, 1]
countDownList(8) à [8, 7, 6, 5, 4, 3, 2, 1]

Apply the wishful thinking strategy on n = 4:
•  countDownList(4) should return [4, 3, 2, 1]
•  By wishful thinking, assume countDownList(3) returns [3, 2, 1]
•  How to combine 4 and [3, 2, 1] to yield [4, 3, 2, 1]?

[4] + [3, 2, 1]
•  Generalize: countDownList(n) = [n] + countDownList(n-1)

7	More	Frui*ul	Recursion	

countDownList(n)

def countDownList(n):
 """Returns a list of numbers from n down to 1.
 For example, countDownList(5) returns
 [5,4,3,2,1].
 """
 if n <= 0:
 return []
 else:
 return [n] + countDownList(n-1)

8	More	Frui*ul	Recursion	

To remember
When the glue operation in a
recursive function involves lists,
the identity value is the empty
list. ︎

Define countDownListPrintResults(n)

def countDownListPrintResults(n):
 """Returns a list of numbers from n down to 1
 and also prints each recursive result along
 the way."""
 if n <= 0:

 # add a print statement here
 result = []
 else:
 result = [n] + countDownListPrintResults(n-1)
 # add a print statement here
 return result

9	More	Frui*ul	Recursion	

Exercise 4: Define countUpList(n)

def countUpList(n):
 """Returns a list of numbers from 1 up to n.
 For example, countUpList(5) returns
 [1,2,3,4,5]."""
 if n <= 0:
 return ?? # What goes here?
 else:
 return ?? # What goes here?

10	More	Frui*ul	Recursion	

sublists
For a given list L (possibly containing duplicates), let’s use the term sublist of L to
refer to any list that keeps some elements of L and omits others in their same
relative order. E.g., the sublists of [5,	3,	8,	3] are:

[5,	3,	8,	3]	# Keep all elements

[3,	8,	3]	# Omit 5

[5,	8,	3]	# Omit 1st 3

[5,	3,	3]	# Omit 8

[5,	3,	8]	# Omit 2nd 3

[8,	3]	# Omit 5 and 1st 3

[3,	3]	# Omit 5 and 8

[3,	8]	# Omit 5 and 2nd 3

[5,	3]	# Omit 8 and 1st 3

[5,	3]	# Omit 8 and 2nd 3
							# (note duplication)

11	More	Frui*ul	Recursion	

[5,	8]	# Omit both 3s

[5]	# Keep only 5

[3]	# Keep only 1st 3

[8]	# Keep only 8

[3]	# Keep only 2nd 3
				# (Note duplication)

[]	# Omit all elements

sublistSum function

Given a list of numbers (possibly containing duplicates) and a target
number, sublistSum returns a list of all sublists whose sum is the
target number. For example:
sublistSum([2, 3, 5, 5, 11, 17], 23)
 à [[2, 5, 5, 11]] # Only sublist that sums to 23
The fact that [2, 3, 5, 5, 11, 17] is sorted is irrelevant;
it just makes it easy to keep track of the numbers.

sublistSum([2, 3, 5, 5, 11, 17], 30)
 à [[2, 11, 17], [3, 5, 5, 17]] # Two sublists sum to 30

sublistSum([2, 3, 5, 5, 11, 17], 24)
 à [[2,	5,	17],	[2,	5,	17], [3,	5,	5,	11]]
 # One sublist uses the 1st 5, the other uses the 2nd 5

sublistSum([2, 3, 5, 5, 11, 17], 34)
 à [] # No sublists sum to 34

12	More	Frui*ul	Recursion	

But how to think about implementing this function?

Big #3: Problem Solving Strategies

P

P1 P2 P3 P4

S4S3S2S1

S

Divide
 problem P into subproblems.

Solve
 each of the subproblems.

Combine
 the solutions to the subproblems
into a solution S for P.

Example: Divide/Solve/Combine

Other Strategies/Skills

•  Incremental/iterative development
•  Testing & Debugging

13	More	Frui*ul	Recursion	

Recall Big Idea #3:

In both recursive calls
 the nums argument will be

 all the nums except for the first (2)

sublistSum divide/solve/combine strategy:
keep or omit 1st element

14	More	Frui*ul	Recursion	

slSum([2,3,5,5,11,17], 24)

sl abbreviates sublist
slSum abbreviates sublistSum

slSum([3,5,5,11,17], 24) slSum([3,5,5,11,17], 22)

Divide
Keep 2 in sublists, so
recursive call will use
24-2 = 22 as target.

Omit 2 in sublists, so
recursive call will
use 24 as target.

Solve
[[5,	17],	[5,	17]]

Combine

(Wishful thinking)

[[2] + sl for sl in
 [[5,	17],	[5,	17]]

List comprehsension
that adds 2 at the front
of each sublist from
recursive solution

[[2,	5,	17],	[2,	5,	17]] + [[3,	5,	5,	11]]

[[2,	5,	17],	[2,	5,	17], [3,	5,	5,	11]]

Concatenate two
lists of sublists from
two subproblems

sublistSum strategy: recursion tree example
slSum([1, 6, 5], 6)

slSum([6,5],6)

sl abbreviates sublist
slSum abbreviates sublistSum

slSum([6,5],5)

slSum([5],6)

slSum([],1) slSum([],6)

slSum([5],0)

[[5]+sl
 for sl in []]

[] + []

slSum([],-5) slSum([],0)

slSum([5],5) slSum([5],-1)

slSum([],0) slSum([],5) slSum([],-6) slSum([],-1)

[[5]+sl
 for sl in []]

 [] + [[]]

[[5]+sl
 for sl in [[]]]

[[5]] + []

[[5]+sl
 for sl in []]

[] + []

[[6]+sl
 for sl in [[]]]

[[6]] + []

[[6]+sl
 for sl in []]

[] + [[5]]

[[1]+sl
 for sl in [[5]]]

[[1,5]] + [[6]]

[[1,5], [6]]
15	More	Frui*ul	Recursion	

sublistSum definition
def	sublistSum(nums,	target):	
				if	nums	==	[]:	#	base	case	
								#	Subtlety:	there	are	*two*	sub	base	cases:		
								if	target	==	0:	
												return	[[]]	#	sum([])	==	0,	so	include	[]	in	result	list	
								else:	
												return	[]	#	sum([])	cannot	be	nonzero,	
																						#	so	don't	include	[]	in	result	list	
				else:		
								fst	=	nums[0]	#	first	number	in	list	
								rst	=	nums[1:]	#	all	but	first	numbers	in	list	
								keepingFirst	=	[([fst]	+	sumList)	#	all	sublists	keeping	fst	
																								for	sumList	in	sublistSum(rst,	target-fst)	
																																							#	recursive	call	excludes	fst	
]	
								omittingFirst	=	sublistSum(rst,	target)	#	all	sublists	omitting	fst	
								return	keepingFirst	+	omittingFirst	
	
	
			

16	More	Frui*ul	Recursion	

list comprehension

Testing sublistSum
>>>	for	tgt	in	range(20,36):	
				testSublistSum([2,	3,	5,	5,	11,	17],	tgt)	
	
sublistSum([2,	3,	5,	5,	11,	17],	20)	=>	[[3,	17]]	
sublistSum([2,	3,	5,	5,	11,	17],	21)	=>	[[2,	3,	5,	11],	[2,	3,	5,	11],	[5,	5,	11]]	
sublistSum([2,	3,	5,	5,	11,	17],	22)	=>	[[2,	3,	17],	[5,	17],	[5,	17]]	
sublistSum([2,	3,	5,	5,	11,	17],	23)	=>	[[2,	5,	5,	11]]	
sublistSum([2,	3,	5,	5,	11,	17],	24)	=>	[[2,	5,	17],	[2,	5,	17],	[3,	5,	5,	11]]	
sublistSum([2,	3,	5,	5,	11,	17],	25)	=>	[[3,	5,	17],	[3,	5,	17]]	
sublistSum([2,	3,	5,	5,	11,	17],	26)	=>	[[2,	3,	5,	5,	11]]	
sublistSum([2,	3,	5,	5,	11,	17],	27)	=>	[[2,	3,	5,	17],	[2,	3,	5,	17],	[5,	5,	17]]	
sublistSum([2,	3,	5,	5,	11,	17],	28)	=>	[[11,	17]]	
sublistSum([2,	3,	5,	5,	11,	17],	29)	=>	[[2,	5,	5,	17]]	
sublistSum([2,	3,	5,	5,	11,	17],	30)	=>	[[2,	11,	17],	[3,	5,	5,	17]]	
sublistSum([2,	3,	5,	5,	11,	17],	31)	=>	[[3,	11,	17]]	
sublistSum([2,	3,	5,	5,	11,	17],	32)	=>	[[2,	3,	5,	5,	17]]	
sublistSum([2,	3,	5,	5,	11,	17],	33)	=>	[[2,	3,	11,	17],	[5,	11,	17],	[5,	11,	17]]	
sublistSum([2,	3,	5,	5,	11,	17],	34)	=>	[]	
sublistSum([2,	3,	5,	5,	11,	17],	35)	=>	[[2,	5,	11,	17],	[2,	5,	11,	17]]	
	
			 17	More	Frui*ul	Recursion	

Alternative approach to sublistSum
Suppose we had a sublists function that returns all sublists of a list.

(The order of sublists isn’t specified; they can be in any order.) E.g.:

sublists([5,	3,	8,	3])		
		à [[5,	3,	8,	3],	[5,	3,	8],	[5,	3,	3],	[5,	3],		

							[5,	8,	3],	[5,	8],	[5,	3],	[5],		
							[3,	8,	3],	[3,	8],	[3,	3],	[3],		
							[8,	3],	[8],	[3],	[]]	

Then we could define sublistSum as:

	

18	More	Frui*ul	Recursion	

def sublistSum(nums, target)
 """Alternative implementation of sublistSum
 using sublists""”
 return [ns for ns in sublists(nums)
 if sum(ns) == target]

2nd half of results are sublists
omitting first element

1st half of results
keeps first element
at the front of every
sublist in 2nd half

def	sublists(xs):	
				'''Given	a	list	of	n	values	(which	might	contain	duplicates),			
							return	a	list	of	all	possible	2^n	sublists,	where	a	sublist	
							is	the	result	of	independently	choosing	to	keep	or	not	to		
							keep	particular	value	occurrences	without	changing	their	
							relative	order.	The	order	of	sublists	is	not	specified.		
				'''	
				if	xs	==	[]:		
								return	??	#	What	goes	here?		
				else:	
								fst	=	xs[0]	#	first	element	in	list	
								rst	=	xs[1:]	#	all	but	first	element	in	list	
								omittingFirst	=	??	What	goes	here?		
								keepingFirst	=	??	What	goes	here?		

 return ?? # What goes here?

Exercise 5: define sublists

19	More	Frui*ul	Recursion	

Extra: Fibonacci numbers

More	Frui*ul	Recursion	 20	

11-21

Leonardo Pisano Fibonacci counts Rabbits

Month # Pairs

0 0

1 1

2 1

3 2

4 3

5 5

6 8

Assume:
•  Start with one pair of newborn rabbits in month 1.
•  Newborn rabbits become sexually mature after 1
month.
•  Sexually mature pairs produce 1 new pair at the
end of every month .
•  Rabbits never die.

21	More	Frui*ul	Recursion	

Exercise 6: Fibonacci Numbers fib(n)

def fibRec(n):
 '''Returns the nth Fibonacci number.'''
 if n <= 1:
 return n
 else:
 return fibRec(n-1) + fibRec(n-2)

The nth Fibonacci number fib(n) is the number of
pairs of rabbits alive in the nth month.

Formula:
 fib(0) = 0 ; no pairs initially
 fib(1) = 1 ; 1 pair introduced the first month
 fib(n) = fib(n-1) ; pairs never die, so live to next month
 + fib(n-2) ; all sexually mature pairs produce
 ; a pair each month

Now write the program:

22	More	Frui*ul	Recursion	

fibRec(0)

Fibonacci: Efficiency

How long would it take to calculate fibRec(100)?

fibRec(4)

: 1 : 0 fibRec(1)

: 1 : 0 fibRec(1) fibRec(0)

: 1 fibRec(2) fibRec(1)

fibRec(3) fibRec(2)

: 1
+

: 2
+

: 1
+

: 3
+

Is there a better way to calculate Fibonacci numbers?

23	More	Frui*ul	Recursion	

Iteration leads to a more efficient fib(n)
The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, …

Iteration table for calculating the 8th Fibonacci number:

i fibi fibi_next

0 0 1

1 1 1

2 1 2

3 2 3

4 3 5

5 5 8

6 8 13

7 13 21

8 21 34

24	More	Frui*ul	Recursion	

Exercise 7: fibLoop(n)
Use iteration to calculate Fibonacci
numbers more efficiently:

i fibi fibi_next

0 0 1

1 1 1

2 1 2

3 2 3

4 3 5

5 5 8

6 8 13

7 13 21

8 21 34

def fibLoop(n):
 '''Returns the nth Fibonacci number.'''
 fibi = 0
 fibi_next = 1
 for i in range(1, n+1):
 # flesh out this loop body

 return ??	#	What	goes	here?		

25	More	Frui*ul	Recursion	

