
CS111 Computer Programming

Department of Computer Science
Wellesley College

Lists,
Memory Diagrams,

Mutable vs. Immutable Sequences

Lists (and other sequences) are useful to represent collections,
especially where order matters.

Why Lists (and other sequences)?

course information
for all Wellesley courses

list of all registered US voters

Complete works of Maya Angelou:
o As a single string
o As a list of books, poems,

sentences, verses, words, etc.

List Diagrams/Mutability 2

Homogenous and nested lists
Lists in which all elements have the same type are called homogeneous.

Most of the lists we’ll use will be homogeneous.

Lists can also contain other lists as elements! These are nested lists.

List of primes less than 20
[2, 3, 5, 7, 11, 13, 17, 19]

List of string lists
[['fox', 'raccoon'], ['duck', 'raven', 'gosling'], [], ['turkey']]

List Diagrams/Mutability 3

Heterogeneous lists
Python also allows heterogeneous lists in which elements can have different types.

In general, you should avoid heterogeneous lists unless you have a good reason to
use them (they make programs harder to reason about).

In a few weeks, we will learn about another data type (dictionaries) that are better at
storing heterogeneous data.

[17, True, ‘R-Rated', None, [13, False, ‘PG-13']]

List Diagrams/Mutability 4

In this lecture, we’ll use
heterogenous lists for
pedagogical purposes.

Lists: glue for many values

Literal list definitions
primes = [2, 3, 5, 7, 11, 13, 17, 19]
bools = [1<2, 1==2, 1>2]
houses = ['Gryffindor', 'Hufflepuff', 'Ravenclaw', 'Slytherin']
strings = ['ab' + 'cd', 'ma'*4]
counts = [1, 2, 3] + [4, 5]
animalLists = [['fox', 'raccoon'],

['duck', 'raven', 'gosling'], [], ['turkey']]

A heterogeneous list
stuff = [17, True, 'foo', None, [42, False, 'bar']]

An empty list
empty = []

Lists returned from built-in functions and methods
odds = list(range(1,10,2)) # [1,3,5,7,9]
lyrics = 'call me on my cell'.split() # splits by spaces

['call', 'me', 'on', 'my', 'cell']
letters = list('happy') # ['h', 'a', 'p', 'p', 'y']

List Diagrams/Mutability 5

List sequence operations (review)

List Diagrams/Mutability

Operation Result
x in seq True if an item of seq is equal to x
x not in seq False if an item of seq is equal to x
seq1 + seq2 The concatenation of seq1 and seq2
seq*n, n*seq n copies of seq concatenated
seq[i] i’th item of seq, where origin is 0
seq[i:j] slice of seq from i to j
seq[i:j:k] slice of seq from i to j with step k
len(seq) length of seq
min(seq) smallest item of seq
max(seq) largest item of seq

6

List indexing and slicing (review)
In[1]: houses = ['Gryffindor', 'Hufflepuff', 'Ravenclaw', 'Slytherin']

In[2]: houses[0] # List indexing
Out[2]: 'Gryffindor'

In[3]: houses[3]
Out[3]: 'Slytherin'

In[4]: houses[4]

IndexError Traceback (most recent call last)
<ipython-input-4-834fac18ce76> in <module>()
----> 1 houses[4]
IndexError: list index out of range

List Diagrams/Mutability

Indexing: get one element
from the given position (index)
in the list.

7

List indexing and slicing (review)

In[5]: houses[-3]
Out[5]: 'Hufflepuff'

In[6]: houses[1:3] # List slicing
Out[6]: ['Hufflepuff', 'Ravenclaw']

In[7]: houses[2:]
Out[7]: ['Ravenclaw', 'Slytherin']

In[8]: houses[:2]
Out[8]: ['Gryffindor', 'Hufflepuff']

List Diagrams/Mutability

Slicing: get a new list
of all list elements at indices
in the given range.

Negative indexing: negative indices
index from the end of the list.

8

Nested list indexing (is not special!)
In[1]: animalLists = [['fox', 'raccoon'],

['duck', 'raven', 'gosling'],
[],
['turkey']]

In[2]: animalLists[0][1]
Out[2]: 'raccoon'

In[3]: mammals = animalLists[0]

In[4]: mammals
Out[4]: ['fox', 'raccoon']

In[5]: mammals[1]
Out[5]: 'raccoon'

List Diagrams/Mutability

List of lists.

Nested list indexing is not special!
It is just indexing an already indexed
sequence.

9

Practice!

4-10

animalLists = [['fox', 'raccoon'],
['duck', 'raven', 'gosling'],
[],
['turkey']]

Write a 1-line Python expression to get 'raven' from animalLists.

Write a 1-line Python expression to get 'turkey' from animalLists.

Challenge: write two new expressions that also get 'raven'
and 'turkey' using different indices than before.

How to represent list values:
Memory Diagrams [1]

0

'Gryffindor'

bools
True

0 1 2

list slot indices

list slots

0
primes

2

a list valuea variable

1

3

2

5

3

7

4

11

5

13

6

17

7

-1

19

1

list indices
start at 0,

not 1

False

2

False

houses
3

Numbers, booleans, and None
are “small enough” to fit directly
in variables and list slots.

'Hufflepuff' 'Ravenclaw' 'Slytherin' List Diagrams/Mutability

-2-3-4-5-6-7-8 negative indices
work from end

Big # 4: Models

All other values are drawn
outside the variable/list slot,
with an arrow pointing to them.

11

How to represent nested lists:
Memory Diagrams [2]

0 1 2
animalLists

3

0 1

'fox' 'raccoon' 'duck'

0 1 2

'raven' 'gosling' 'turkey'

0

animalLists = [['fox', 'raccoon'],
['duck', 'raven', 'gosling'],
[],
['turkey']] List Diagrams/Mutability 12

Lists are mutable, meaning that their contents can change over time.

Lists are mutable/changeable

Lists can change in two ways:

1. The element at a given index can change over time. That is, the
slot in a list at a particular index behaves as a variable, whose
contents can change over time.

2. The length of a list can change over time as new slots are added
or removed.

List Diagrams/Mutability 13

List slot mutability example

list slots
shoesizes

shoesizes = [8, 8.5, 12.5, 10]

shoesizes[3] = 11.5

list slot indices

a list valuea variable

0 2 3

8 8.5 10

1

12.5

shoesizes
0 2

8 8.5 10

1

12.5

3

11.5

List Diagrams/Mutability 14

after this change, there is no “memory”
that shoesizes[3] was previously 10

List slot mutability larger example [1]

list slot indices

list slots

0 1 2

'I' 'am''Sam'

myList
3 4

17 True3.141 None

0 1 2

a list value

myList = [17, 3.141, True, None, ['I', 'am', 'Sam']]

a variable

List Diagrams/Mutability 15

List slot mutability larger example [2]
The value in any named or numbered box can change over time.
For example, the values in list slots can be changed by assignment.

0 1 2 3 4

17 True3.141 None

0 1 2

myList[1] = myList[0] + 6

myList[3] = myList[0] > myList[1]

23 False

myList[4][1] = 'was'

'I' 'am''Sam'

'was'
List Diagrams/Mutability

myList

16

append: add a new slot to the end of a list

0 1 2 3 4

17 True

5

42

0 1 2

myList.append(42)

myList[4].append('Adams')

23 False

'I' 'was''Sam''Adams'

3

List Diagrams/Mutability

myList

17

List Mutability Summary

In []: numStrings = ['zero', 'one', 'two', 'three', 'four']
In []: numStrings[3] = 'THREE'
In []: numStrings
Out[]: ['zero', 'one', 'two', 'THREE', 'four']

In []: numStrings.append('five')
In []: numStrings
Out[]: ['zero', 'one', 'two', 'THREE', 'four', 'five']

Assigning to a list index:

Adding an element to the end of a list with append:

List Diagrams/Mutability 18

List Diagrams/Mutability

(remove an element from a list)
pop

(adding a new element to a list)
insert

More list mutability

19

0 1 3 4

17

5

42

0 1 2

23 False

'I' 'was''Sam''Adams'

3

List Diagrams/Mutability 20

myList.pop(3)

myList
2

True

pop: remove slot at an index and
return its value

0 1 2 3

17

4

42

0 1 2

23 True

'I' 'was''Sam''Adams'

3

List Diagrams/Mutability 21

myList.pop(3)

myList

False # Indices of slots after 3 are decremented

pop: remove slot at an index and
return its value

List Diagrams/Mutability 22

myList.pop(3)

myList[3].pop(2)

0 1 2 3

17

4

42

0 1 2

23 True

'I' 'was''Sam''Adams'

3

myList

False # Indices of slots after 3 are decremented

pop: remove slot at an index and
return its value

0 1 2 3

17

4

42

0 1

23 True

'I' 'was' 'Adams'

2

List Diagrams/Mutability

myList

23

myList.pop(3)

myList[3].pop(2) 'Sam'

False # Indices of slots after 3 are decremented

Index of previous slot 3 is decremented

pop: remove slot at an index and
return its value

0 1 2 3

17

4

42

0 1

23 True

'I' 'was' 'Adams'

2

List Diagrams/Mutability

myList

24

myList.pop(3)

myList[3].pop(2)

myList.pop()

'Sam'

False # Indices of slots after 3 are decremented

Index of previous slot 3 is decremented

pop: remove slot at an index and
return its value

0 1 2 3

17

0 1

myList.pop(3)

23 True

'I' 'was'

'Sam'

'Adams'

2

False # Indices of slots after 3 are decremented

myList[3].pop(2) # Index of previous slot 3 is decremented

myList.pop() 42 # When no index, last one is assumed

List Diagrams/Mutability

myList

25

pop: remove slot at an index and
return its value

0 1 2 3

17

0 1

23 True

'I' 'was' 'Adams'

2

List Diagrams/Mutability

myList

26

myList.insert(0, 98.6)

insert: add a slot, add an index

1 2 3 4

17

0 1

23 True

'I' 'was' 'Adams'

2

0

98.6

List Diagrams/Mutability

myList

27

myList.insert(0, 98.6) # Indices of previous slots 0 and above
are incremented

insert: add a slot, add an index

1 2
myList

3 4

17

0 1

23 True

'I' 'was' 'Adams'

2

0

98.6

List Diagrams/Mutability 28

myList.insert(0, 98.6) # Indices of previous slots 0 and above
are incremented

myList[4].insert(2, 'not')

insert: add a slot, add an index

1 2
myList

3 4

17

0 1

23 True

'I' 'was' 'not'

2

0

98.6

Indices of previous slots 0 and above
are incremented

myList[4].insert(2, 'not') # Index of previous slot 2 is incremented

'Adams'

3

List Diagrams/Mutability 29

insert: add a slot, add an index

myList.insert(0, 98.6)

sam buddy

List Diagrams/Mutability

More list mutability

(same object stored in multiple variables and slots)
"Aliasing"

30

List Diagrams/Mutability 31

L1 = [7, 4]

Aliasing: the same object can be stored
in different variables & slots [1]

1
L1

4

List Diagrams/Mutability 32

L1 = [7, 4]

0

7

Aliasing: the same object can be stored
in different variables & slots [1]

1
L1

4

List Diagrams/Mutability 33

L1 = [7, 4]

0

7

L2 = [7, 4]

Aliasing: the same object can be stored
in different variables & slots [1]

1
L1

4

List Diagrams/Mutability 34

L1 = [7, 4]

0

7

L2 = [7, 4]

1
L2

4

0

7

L2 is a copy of L1; can also write as L2 = L1[0:2] or L2 = L1[:]

Aliasing: the same object can be stored
in different variables & slots [1]

1
L1

4

List Diagrams/Mutability 35

L1 = [7, 4]

0

7

L2 = [7, 4]

L3 = L2

1
L2

4

0

7

L2 is a copy of L1; can also write as L2 = L1[0:2] or L2 = L1[:]

Aliasing: the same object can be stored
in different variables & slots [1]

1
L1

4

List Diagrams/Mutability 36

L1 = [7, 4]

0

7

L2 = [7, 4]

L3 = L2

1
L2

4

0

7

L3

L3 is the same list object as L2

L2 is a copy of L1; can also write as L2 = L1[0:2] or L2 = L1[:]

Aliasing: the same object can be stored
in different variables & slots [1]

1
L1

4

List Diagrams/Mutability 37

L1 = [7, 4]

0

7

L2 = [7, 4]

L3 = L2

1
L2

4

0

7

L3

L3 is the same list object as L2

L2[1] = 8

L2 is a copy of L1; can also write as L2 = L1[0:2] or L2 = L1[:]

Aliasing: the same object can be stored
in different variables & slots [1]

1
L1

4

List Diagrams/Mutability 38

L1 = [7, 4]

0

7

L2 = [7, 4]

L3 = L2

1
L2

8

0

7

L3

L3 is the same list object as L2

L2[1] = 8 # Changes L2 and L3 but not L1

L2 is a copy of L1; can also write as L2 = L1[0:2] or L2 = L1[:]

Aliasing: the same object can be stored
in different variables & slots [1]

1
L1

4

List Diagrams/Mutability 39

L1 = [7, 4]

0

7

L2 = [7, 4]

L3 = L2

L4 = [L1, L1, L2, L3]

1
L2

8

0

7

L3

L3 is the same list object as L2

L2[1] = 8 # Changes L2 and L3 but not L1

L2 is a copy of L1; can also write as L2 = L1[0:2] or L2 = L1[:]

Aliasing: the same object can be stored
in different variables & slots [1]

1
L1

4

List Diagrams/Mutability 40

L1 = [7, 4]

0

7

L2 = [7, 4]

L3 = L2

L4 = [L1, L1, L2, L3]

1
L2

8

0

7

L3

1
L4

0 32

L3 is the same list object as L2

L2[1] = 8 # Changes L2 and L3 but not L1

Introduces new aliases through L4

L2 is a copy of L1; can also write as L2 = L1[0:2] or L2 = L1[:]

Aliasing: the same object can be stored
in different variables & slots [1]

List Diagrams/Mutability 41

L1 = [7, 4]

L2 = [7, 4]

L3 = L2

L4 = [L1, L1, L2, L3]

L4[2].append(5)

L3 is the same list object as L2

L2[1] = 8 # Changes L2 and L3 but not L1

Introduces new aliases through L4

L2 is a copy of L1; can also write as L2 = L1[0:2] or L2 = L1[:]

Aliasing: the same object can be stored
in different variables & slots [1]

1
L1

4

0

7

1
L2

8

0

7

L3

1
L4

0 32

1
L1

4

List Diagrams/Mutability 42

L1 = [7, 4]

0

7

L2 = [7, 4]

L3 = L2

L4 = [L1, L1, L2, L3]

1
L2

8

0

7

L3

1
L4

0 32

L4[2].append(5)

2

5

L3 is the same list object as L2

L2[1] = 8 # Changes L2 and L3 but not L1

Introduces new aliases through L4
Changes L2, L3, L4[2], and L4[3], but not L1, L4[0], and L4[1]

L2 is a copy of L1; can also write as L2 = L1[0:2] or L2 = L1[:]

Aliasing: the same object can be stored
in different variables & slots [1]

1 2
myList

3 4

17

0 1

23 True

'I' 'was' 'not'

2

0

98.6

'Adams'

3

List Diagrams/Mutability 45

list2 = myList

Aliasing: the same object can be stored
in different variables & slots [2]

1 2
myList

3 4

17

0 1

23 True

'I' 'was' 'not'

2

0

98.6

'Adams'

3

list2

List Diagrams/Mutability 46

list2 = myList # list2 and myList are now the same list, not just copies

Aliasing: the same object can be stored
in different variables & slots [2]

1 2
myList

3 4

17

0 1

23 True

'I' 'was' 'not'

2

0

98.6

'Adams'

3

list2

List Diagrams/Mutability 47

list2 = myList

adamsList = list2[4]

list2 and myList are now the same list, not just copies

Aliasing: the same object can be stored
in different variables & slots [2]

1 2
myList

3 4

17

0 1

23 True

'I' 'was' 'not'

2

0

98.6

'Adams'

3

list2

adamsList

List Diagrams/Mutability 48

list2 = myList

adamsList = list2[4]

list2 and myList are now the same list, not just copiesx

Now myList[4] is also an alias for adamsList

Aliasing: the same object can be stored
in different variables & slots [2]

1 2
myList

3 4

17

0 1

23 True

'I' 'was' 'not'

2

0

98.6

'Adams'

3

list2

List Diagrams/Mutability 49

adamsList

list2 = myList

adamsList = list2[4]

myList[1] = myList[4]

list2 and myList are now the same list, not just copies

Now myList[4] is also an alias for adamsList

Aliasing: the same object can be stored
in different variables & slots [2]

1 2
myList

3 4

0 1

23 True

'I' 'was' 'not'

2

0

98.6

'Adams'

3

list2

List Diagrams/Mutability 50

adamsList

list2 = myList

adamsList = list2[4]

myList[1] = myList[4]

list2 and myList are now the same list, not just copies

Now myList[4] is also an alias for adamsList

Now list2[1] is another alias for adamsList

Aliasing: the same object can be stored
in different variables & slots [2]

1 2
myList

3 4

0 1

23 True

'I' 'was' 'not'

2

0

98.6

'Adams'

3

list2

List Diagrams/Mutability 51

adamsList

list2 = myList

adamsList = list2[4]

myList[1] = myList[4]

adamsList[2] = 'JQ'

list2 and myList are now the same list, not just copies

Now myList[4] is also an alias for adamsList

Now list2[1] is another alias for adamsList

Aliasing: the same object can be stored
in different variables & slots [2]

1 2
myList

3 4

0 1

list2 = myList

23 True

'I' 'was' 'JQ'

2

0

98.6

'Adams'

3

list2

adamsList = list2[4]

myList[1] = myList[4]

List Diagrams/Mutability 52

adamsList

adamsList[2] = 'JQ' # Because of aliasing, this also changes myList[1][2],
myList[4][2], list2[1][2], and list2[4][2]

list2 and myList are now the same list, not just copies

Now myList[4] is also an alias for adamsList

Now list2[1] is another alias for adamsList

Aliasing: the same object can be stored
in different variables & slots [2]

1
L1

4

List Diagrams/Mutability 54

0

7

1
L2

8

0

7

L3

1
L4

0 32

2

5

Built-in id function identifies which lists are the same

In [6]: id(L1)
Out[6]: 140689397337616

In [7]: id(L2)
Out[7]: 140689376966528

In [8]: id(L3)
Out[8]: 140689376966528

In [9]: id(L4[0])
Out[9]: 140689397337616

In [10]: id(L4[1])
Out[10]: 140689397337616

In [11]: id(L4[2])
Out[11]: 140689376966528

In [12]: id(L4[3])
Out[12]: 140689376966528

The built-in id function returns a unique number for every object in memory.
You can think of it as an abstract address for that object. You can use it to tell
which objects are the “same” objects in memory.

1
L1

4

List Diagrams/Mutability 55

0

7

1
L2

8

0

7

L3

1
L4

0 32

2

5

Built-in is operator indicates which lists are the same

In [13]: L1 is L2
Out[13]: False

In [14]: L1 is L4[0]
Out[14]: True

In [15]: L2 is L3
Out[15]: True

In [16]: L2 is L4[0]
Out[16]: False

In [17]: L3 is L4[2]
Out[17]: True

In [18]: L4[0] is L4[1]
Out[18]: True

In [19]: L4[1] is L4[2]
Out[19]: False

The built-in binary is operator returns True if its operands have the same id
and False otherwise. It’s an easy way to test whether two list objects are the same.

What is the final value of c[0]?
a = [15, 20]
b = [15, 20]
c = [10, a, b]
b[1] = 2*a[0]
c[1][0] = c[0]
c[0] = a[0] + c[1][1] + b[0] + c[2][1]

Draw a memory diagram!

List Diagrams/Mutability 56

a = [15, 20]
b = [15, 20]
c = [10, a, b]
b[1] = 2*a[0]
c[1][0] = c[0]
c[0] = a[0] + c[1][1] + b[0] + c[2][1]

Does the answer change if we change the 2nd line from
b = [15, 20] to b = a[:]?

List Diagrams/Mutability 57

a = [15, 20]
b = [15, 20]
c = [10, a, b]
b[1] = 2*a[0]
c[1][0] = c[0]
c[0] = a[0] + c[1][1] + b[0] + c[2][1]

Does the answer change if we change the 2nd line from
b = [15, 20] to b = a?

List Diagrams/Mutability 58

--
AttributeError … name.append(’s’)
AttributeError: 'str' object has no attribute 'append'

Lists are mutable. What about strings?
Strings are sequences:
In [20]: name = 'Gryffindor'
In [21]: name[2] # 'y'
In [22]: name[4:8] # 'find'
In [23]: 'do' in name # True

Mutation operations do not work on strings:
In [24]: name[4] = 't' # what happens?

In [25]: name.append('s') # what happens?

--
TypeError … name[0]= ’t’
TypeError: 'str' object does not support item assignment

List Diagrams/Mutability 59

In[26]: college = 'WELLESLEY'

'WELLESLEY'

Once you create a string, it cannot be changed

college

In[28]: myCollege = college.lower()

'wellesley'myCollege

List Diagrams/Mutability

In[27]: college.lower()
Out[27]: 'wellesley' # Returns a new string 'wellesley';

old one is unchanged!

Immutable, not changed.

60

Strings are immutable sequences

Lists are mutable sequences of values.
Tuples are immutable sequences of values.

Tuples are written as comma-separated values delimited by parentheses.

Tuples

A homogeneous tuple of five integers (a 4-tuple)
(5, 8, 7, 1, 3)

A homogeneous tuple of four strings
('Gryffindor', 'Hufflepuff', 'Ravenclaw', 'Slytherin')

A heterogeneous tuple of three elements (a 3-tuple)
(42, 'Hello', False)

A pair is a tuple with two elements (a 2-tuple)
(7, 3)

(7,) # A tuple with one element must use a comma to avoid
being confused with a parenthesized expression

() # A tuple with 0 values
List Diagrams/Mutability 61

Tuple Assignment
Suppose harryInfo is a tuple of three values:

In [46]: harryInfo = ('Harry Potter', 11, True)

List Diagrams/Mutability 62

In [47]: (name, age, glasses) = harryInfo

Then we can extract three named values from harryInfo by a single
assignment to a tuple of three variable names:

This so-called tuple assignment is just a shorthand for three separate assignments:

name = harryInfo[0]
age = harryInfo[1]
glasses = harryInfo[2]

We can now use these names like any other variables:

In [48]: print(name.lower(), age + 6, not glasses)

harry potter 17 False

Parens are not necessary in a tuple assignment; above, we could also have written:

In [49]: name, age, glasses = harryInfo

Tuples are also immutable sequences

In[32]: houseTuple = ('Gryffindor', 'Hufflepuff',
'Ravenclaw', 'Slytherin')

In[33]: houseTuple[0]
Out[33]:'Gryffindor'

In[34]: houseTuple[1:3]
Out[34]: ('Hufflepuff', 'Ravenclaw')

In[35]: houseTuple.count('Slytherin')
Out[35]: 1

In[36]: 'Ravenclaw' in houseTuple
Out[36]: True

In[37]: houseTuple * 2 + ('12 Grimmauld Place',)
Out[37]:('Gryffindor', 'Hufflepuff', 'Ravenclaw', 'Slytherin',

'Gryffindor', 'Hufflepuff', 'Ravenclaw', 'Slytherin',

'12 Grimmauld Place') List Diagrams/Mutability

Like strings, tuples support all sequence operations that do not involve mutation.

63

Mutation operations do not work on tuples

In [38]: houseTuple[0] = '4 Privet Drive'
--
TypeError … houseTuple[0] = '4 Privet Drive'
TypeError: 'tuple' object does not support item assignment

In [39]: houseTuple.append('The Shrieking Shack')

AttributeError … houseTuple.append('The Shrieking Shack')
AttributeError: 'tuple' object has no attribute 'append'

In [40]: houseTuple.pop(1)

AttributeError … houseTuple.pop(1)
AttributeError: 'tuple' object has no attribute 'pop'

List Diagrams/Mutability 64

Conversion between sequence types
The built-in functions str, list, tuple create a new value of the
corresponding type.

In [41]: word = "Wellesley"
In [42]: list(word)
Out[42]: ['W', 'e', 'l', 'l', 'e', 's', 'l', 'e', 'y']

In [43]: tuple(word)
Out[43]: ('W', 'e', 'l', 'l', 'e', 's', 'l', 'e', 'y')

In [44]: numbers = range(5, 15, 2)
In [45]: str(numbers)
Out[45]: 'range(5, 15, 2)'

List Diagrams/Mutability 65

Enumerations
When called on a sequence, the enumerate function returns a
sequence of pairs of indices and values.

In [50]: list(enumerate('boston'))
Out[50]: [(0, 'b'), (1, 'o'), (2, 's'), (3, 't'), (4, 'o'), (5, 'n')]

In [51]: list(enumerate([7, 2, 8, 5]))
Out[51]: [(0, 7), (1, 2), (2, 8), (3, 5)]

In [52]: for (index, char) in enumerate('boston'):
... print(index, char)
0 b
1 o
2 s
3 t
4 o
5 n

List Diagrams/Mutability 66

Note that for (index, char) in is a use of tuple assigment
notation in a for loop.

for (index, char) in

Test your knowledge

67

1. What are the different ways to create lists? What can be passed into the
list() function?

2. Define mutable and identify whether strings, lists, and ranges are mutable.
3. Explain how the methods pop(), insert(), and append()change lists

when the arguments to those methods are numbers, strings, or elements of the
same list or other list.

4. Does ordering matter in lists? Explain why or why not. What is the result of
[1, 2, 3] == [3, 2, 1]?

5. Why don’t the methods pop(), insert(), and append()work on strings?
6. What does the id() function do? How can it be used to determine aliasing?
7. On slide 46, how would you memory diagram and result change if b = a

instead of b = [15, 20]?
8. What are the similarities and differences between tuples and lists? Why might you

use one over the other?
9. The above slides did not discuss iteration over tuples. Do you think this is

possible? Why or why not?
10. What are the advantages of enumeration? In what context, would it be useful to

use enumeration?
List Diagrams/Mutability

