
CS111 Computer Programming

Department of Computer Science
Wellesley College

Introduction to Recursion

Recursive Patterns

2Recursion I

Reminder: Gluing Functions Together

3Recursion I

tree → branch → twig → leaf
bubbles → bubbles → ...

4

What is Recursion?
Gluing functions together...

...where the sub-problems involve the problem itself !

A recursive function is a function that invokes itself.

With recursion, the solution to a problem depends on solutions to
smaller instances of the same problem

Recursion I

Concepts in this slide:
Recursion is an instance of
solving a problem by sub-
division.

Self-Containing Patterns

5

Fractals, found in nature and mathematics, are examples of
patterns that contain smaller copies of themselves.

This fern image is made of three smaller ferns.
Recursion I

Changing Parameters

6

In recursion, the parameters to the function often change, so the
smaller patterns aren’t quite the same as the original.

5
4
3
2
1

4
3
2
1

3
2
1

2
1

1

Each of these number sequences contains the next, which starts
from a smaller number.

Recursion I

7

Review: functions calling other functions
(in anticipation of writing functions that call themselves)

def print4(s):
print2(s)
print2(s)

def print2(s):
print(s)
print(s)

print4('okay')

def print4(s):
print2(s)
print2(s)

print4('okay')

def print2(s):
print(s)
print(s)

def print2(s):
print(s)
print(s)

def print4(s):
print2(s)
print2(s)

print4('okay')

Which would work? Why/why not?

Recursion I

Our first recursive function:
countDown
Let’s write a function that prints the
integers from n down to 1 (without using loops):

In []: countDown(5)
5
4
3
2
1

8

def countDown(n):
'''Prints integers from n down to 1'''

In []: countDown(4)
4
3
2
1

print(4)
countDown(3)

Recursion I

Decomposition
We can think of the countDown(5)
as composed of the print(5)
statement and the invocation of
countDown(4). And so on.

print(5)
countDown(4)

Concepts in this slide:
In recursion, the smaller
problems are the same as
the problem we’re trying
to solve.

countDown: First Define Base Case
The base case. When the problem is so simple that we can solve it
trivially and we need not decompose it into subproblems.

def countDown(n):
'''Prints integers from n down to 1'’’
if n < 1:

pass # Do nothing

Recursion I 9

Knowing when to stop
At some point, there is no more
decomposition, we have come to a
point where we’ll need to stop.
This is similar to the stopping
condition for a while loop. The
base case is what tells the
recursion to stop.

countDown: More Cases
When you’re solving a recursive problem, you can start by writing
many elif cases. Continue until you see a pattern develop.

def countDown(n):
'''Prints integers from n down to 1'’’
if n < 1:

pass # Do nothing
elif n == 1:

print(1)
elif n == 2:

print(2)
print(1)

elif n == 3:
print(3)
print(2)
print(1)

elif ...

Recursion I 10

Finding the pattern
As you write elif cases, you’ll
eventually see the same code
appearing again and again. That’s
the code that can be made into a
recursive function call.

}

}

These
are the
same!

We are repeating print
statements in elif clauses

countDown: More Cases
You can simplify the pattern by using a recursive call to the same
function with different parameters (which will send you into a
different elif case).

def countDown(n):
'''Prints integers from n down to 1'’’
if n < 1:

pass # Do nothing
elif n == 1:

print(1)
elif n == 2:

print(2)
print(1)

elif n == 3:
print(3)
countDown(2)

elif ...

Recursion I 11

}
Now it’s recursive – we
replaced print(2) and print(1)
with countdown(2)

Don’t need these
cases any more

countDown: More Cases
Finally, try to generalize your code so that it uses the parameter in an
else case that works for all other values.

def countDown(n):
'''Prints integers from n down to 1'’’
if n < 1:

pass # Do nothing
elif n == 1:

print(1)
elif n == 2:

print(2)
print(1)

elif n == 3:
print(3)
countDown(2)

else: # Works for any n >= 1
print(n)
countDown(n-1)

Recursion I 12

countDown:
Recursive Case

The recursive case. One we understand how to write a recursive else case,
we can eliminate unnecessary elif cases. Sometimes we can leave out the
base case too, if it doesn’t do anything (shown by countDownImplicit).
def countDown(n):

'''Prints integers from
n down to 1'''

if n < 1:
pass # Do nothing

else:
print(n)
countDown(n-1)

def countDownImplicit(n):
'''Prints integers from
n down to 1''’
if n > 0:

print(n)
countDownImplicit(n-1)

Recursion I 13

Concepts in this slide:
The recursive case makes
the problem smaller. The
base case can be omitted.

To notice:
• We got rid of several elif cases at once
• The recursive step does two things:

a) performs an action that contributes to the solution
b) Invokes the function with “smaller” parameters

• It is possible to omit the base case when it does nothing

Structure of Recursion
All recursive functions must have two types of cases:

• BASE case: a simple case where the solution is obvious.
In this case the function does not invoke itself, since there is no
need to decompose the problem into subproblems. Sometimes, we
can leave out the base case, if it doesn’t do anything.

• RECURSIVE case: a case where the problem
• is decomposed into subproblems
• at least one of the subproblems is solved by invoking the

function being defined, i.e., the function is invoked in its
own body.

• You should assume the recursive function works correctly
for the smaller subproblems (this is known as “wishful
thinking”)

Recursion I 14

Review: function call frames

square(4)
return 4*4

x 4

square frame

return 16

x 4

square frame

return x*x

x 4

square frame

16

Recursion isn’t magic. It works because of the frame
model for functions we introduced back in Lecture 04.

We’ll now use this model to explain some recursion examples.
Recursion I 15

Invocation of countDown(3)
Anatomy of function call frames
def countDown(n):

'''Prints integers from n down to 1'''
if n>0:

print(n)
countDown(n-1)

if n>0:
print(n)
countDown(n-1)

countDown(3)

In [4]: countDown(3)

3 n

function call frame

There is a local variable in
the frame for:
(1) each parameter
(2) each local name

control arrow shows
what’s currently being
evaluated in function body

Recursion I 16

In [4]: countDown(3)

if True:
print(n)
countDown(n-1)

countDown(3)

3 n

def countDown(n):
'''Prints integers from n down to 1'''
if n>0:

print(n)
countDown(n-1)

if True:
print(3)
countDown(n-1)

countDown(3)

3 n

3

if True:
print(3)
countDown(3-1)

countDown(3)

3 n if True:
print(3)
countDown(2)

countDown(3)

3 n if n>0:
print(n)
countDown(n-1)

countDown(2)

2 n If 2>0:
print(n)
countDown(n-1)

countDown(2)

2 n if True:
print(n)
countDown(n-1)

countDown(2)

2 n if True:
print(3)
countDown(2)

countDown(3)

3 n if True:
print(2)
countDown(n-1)

countDown(2)

2 n

2

if True:
print(2)
countDown(2-1)

countDown(2)

2 n if n>0:
print(n)
countDown(n-1)

countDown(1)
1 n if True:

print(2)
countDown(1)

countDown(2)

2 n if 1>0:
print(n)
countDown(n-1)

countDown(1)
1 n if True:

print(n)
countDown(n-1)

countDown(1)
1 n if True:

print(1)
countDown(n-1)

countDown(1)
1 n

1

if True:
print(1)
countDown(0)

countDown(1)
1 n if True:

print(1)
countDown(0)

countDown(1)
1 n

if False:
print(n)
countDown(n-1)

countDown(0)

0 n

if True:
print(2)
countDown(1)

countDown(2)

2 n

if False:
print(n)
countDown(n-1)

countDown(0)

0 n

Invocation of countDown(3)
Draw the diagram of function call frames

Recursion I 17

Recursion
#1:

subproblem not
smaller
The problem that you are solving recursively must get smaller each time you recur,
i.e., you must get closer to the base case.
Otherwise, the recursion will not terminate -- a so-called infinite recursion.

def countDown(n):

if n < 1: # Base case
pass # Do nothing

else: # Recursive case
print n
countDown(n)

The recursion must eventually reach a base case in
order to end.
If it doesn't, that's another way to get an infinite recursion.

Recursion
#2:

missing base case

def countDown(n):
print n
countDown(n-1)

Recursion I 18

In [2]: countDown(3)
3
2
1
0
-1
-2
-3
...
RuntimeError: maximum recursion depth exceeded
while calling a Python object

"Maximum recursion depth exceeded"
In practice, the infinite recursion examples will terminate when
Python runs out of resources for creating function call frames,
leading to a maximum recursion depth exceeded error message:

Recursion I 19

What does this function do?

def mystery(n):
if n < 1:

pass
else:

mystery(n - 1)
print(n)

What does mystery(3) print?

Recursion I 20

countDownUp
Let's write a function that prints the integers from n down to 1 and
then from 1 up to n:

def countDownUp(n):
'''Prints integers from n down
to 1 and then from 1 up to n
'''

In []: countDownUp(4)
4
3
2
1
1
2
3
4

Recursion I 21

When is the problem so simple that we needn't decompose it into subproblems?
What code do we want to execute in this case?
def countDownUp(n):

'''Prints integers from n down
to 1 and then from 1 up to n
'''

In []: countDownUp(4)
4
3
2
1
1
2
3
4

countDownUp – Base Case

How can we decompose the problem into subproblems so that one of the
subproblems can be solved using countDownUp?

countDownUp - Recursive Case

if n < 1: # base case
pass # do nothing

else: # recursive case

Recursion I 22

Target Practice (concentric circles)
Let’s draw turtle “targets” using recursion:

We can use the drawDot function from
turtleBeads to draw a circle.

Previously, we used loops to write
concentricCircles.

Now we’ll solve the same problem with
recursion.

teleport(-150, 150)
drawTarget(160, 10, 'Aquamarine', 'AntiqueWhite')
teleport(150, 150)
drawTarget(90, 15, 'navyblue', 'skyblue')
teleport(-150, -150)
drawTarget(65, 5, 'springgreen2', 'springgreen4')
teleport(150, -150)
drawTarget(160, 8, 'purple4', 'pink') Recursion I 23

drawTarget: base case?
def drawTarget(radius, thickness, color1, color2):

'''Draws a bullseye target with the given radius with
alternating colors, color1 and color2, where color1 is
the outermost color. thickness is the width of each "band”
in the ring. thickness is also the radius of the smallest
circle that gets drawn.'''

drawTarget: recursive case?
Hint: how can we decompose the
problem into two subproblems
such that one of them involves
drawing a target?

+ =
Recursion I 24

Define bubbles

def bubbles(radius, minRadius, color1, color2):
'''
Draws a circle with two half-sized circles inside it, and two
half-sized circles inside those, etc. unless the size is smaller
than the given minimum, in which case nothing is drawn. The outer
circle is colored color1, while the inner circles are color2, and
their inner circles are color1 again, and so on.
Hint: use the turtleBeads drawDot function for faster and smoother
circles.'''

bubbles(400, 12, 'MidnightBlue', 'LightSkyBlue')

Recursion I 25

Define fern

def fern(length, width):
'''
Draws a fern which is built from a single straight line and three
smaller ferns: one continuing forward, and two more at 70-degree
angles to either side. The length of the ferns on each side is
half the initial width, while their widths are 1/7 of the initial
length. The line drawn is 1/8 of the initial length. Ferns where
the length is less than 2 are not drawn.
'''

fern(400, 300, 4)

Recursion I 26

