
CS111 Computer Programming

Department of Computer Science
Wellesley College

Abstracting with Functions

FUNCTION BASICS

Functions 2

A function is a block of code that
performs a sequence of instructions.

Concepts in this slide:
functions,
input & output

3Functions

q Instruction 1
q Instruction 2
q Instruction 3
q Instruction 4
q Instruction 5

myFunction():

A function is a block of code that
performs a sequence of instructions.

Whenever the function is “called”, the
sequence of instructions is executed.

Concepts in this slide:
functions,
input & output

4Functions

q Instruction 1
q Instruction 2
q Instruction 3
q Instruction 4
q Instruction 5

myFunction()

Functions can take inputs and
return outputs based on those inputs

Here are examples of built-in functions you have seen:

max(7,3)
min(7,3,2,9)
type(123)
len('CS111')
str(4.0)
int(-2.978)
float(42)
round(2.718, 1)

In [...] Out […]

7
2
int
5
'4.0'
-2
42.0
2.7

Concepts in this slide: input
& output

5Functions

Some functions perform actions instead of
returning outputs
These actions are called side effects.
For example, displaying text in the
interactive console is a side effect of
the print and help functions:

Concepts in this slide:
side effects

6Functions

The text outputs in the console are examples of a side effect. There is
no value that is produced by calling print()or help().

Concepts in this slide:
side effects

7Functions

Function diagrams summarize
what functions do

max(), min()
len(), int()

print(),
help()

input()

Concepts in this slide:
function diagrams

8Functions

We will see examples of these soon!

Anatomy of a User-defined
Function

Functions are a way of abstracting over computational processes by
capturing common patterns.

def square(x):
return x * x

Definition
Header

Body

Body is indented!

Parameter

square(5)
square(10)
square(-3)

Calls

Arguments

Keyword indicating
return value. Always ends
execution of function!

Results
25
100
9

Function definitions

Function calls/invocations

Concepts in this slide:
function definition,
function call,
parameter and argument

A function is
defined once.

A function can be
called many times. 9Functions

Parameters and Arguments

The particular name we use for a parameter is irrelevant, as long as we
use the name consistently in the function definition.

def square(x):
return x * x

def square(a):
return a * a

def square(num):
return num * num

def square(aLongParameterName):
return aLongParameterName * aLongParameterName

A parameter is a variable used in the definition of a function, which
will be initialized with an argument value during a function call.

Concepts in this slide:
Difference between
parameters and arguments.

10Functions

The different parameter names: a,
x, num, aLongParameterName,
used for defining the function
square do not affect its behavior.

Unindented function body

The following definition is *incorrect* because the body isn’t indented:

def square(x):
return x*x

Python is unusual among programming languages in that it uses
indentation to determine what’s in the body of a function.

def square(x):
return x*x

You can indent by using the TAB character in the
keyboard. Alternatively, you can use a consistent
number of spaces (e.g. 4).

In general, when the indentation is wrong, you’ll see error
messages that point you to the problem, e.g.:

IndentationError: expected an indented block

IndentationError: unindent does not match
any outer indentation levelSyntaxError: 'return'

outside function
11Functions

Python Function Call Model

return x * x

We need a model to understand how function calls work.

def square(x):
return x * x

square(2 + 3)

square(5)
Step 1: Evaluate all argument expressions to values

(e.g., numbers, strings, objects …)

Step 2: Create a function call frame with
(1) a variable box named by each parameter and
filled with the corresponding argument value; and
(2) the body expression(s) from the
function definition.

x 5

square frame

Step 3: Evaluate the body expression(s), using the
values in the parameter variable boxes
any time a parameter is referenced.
(Do you see why parameter names don’t
matter as long as they’re consistent?)

return 5 * 5

x 5

return 25

x 5

Step 4: The frame is discarded after the value
returned by the frame “replaces” the call

25
12Functions

A function call is “replaced” by its returned value

17 + square(2 + 3)

17 + square(5)

17 + 25

42

13Functions

Multiple parameters

def energy(m, v):
"""Calculate kinetic energy"""
return 0.5 * m * v**2

A function can take as many parameters as needed.
They are separated via comma.

Concepts in this slide:
Defining multiple
parameters.
Using a function from an
imported module

** is Pythons’s
raise-to-the-power
operator

14Functions

def pyramidVolume(len, wid, hgh):
"""Calculate volume rectangular pyramid"""
return (len * wid * hgh)/3.0

Multiple parameters cont.
A function can take as many parameters as needed.
They are separated via comma.

import math

def distanceBetweenPoints(x1, y1, x2, y2):
"""Calculate the distance between points """
return math.sqrt((x2-x1)**2 + (y2-y1)**2)

Concepts in this slide:
Defining multiple
parameters.
Using a function from an
imported module

math.sqrt means use the sqrt
function from Python’s math module.

import declaration allows use of
Python’s math module

15Functions

FUNCTIONS THAT CALL
OTHER FUNCTIONS

Functions 16

Functions calling functions
The function hypotenuse calls the square function we just defined.
import math

def hypotenuse(a, b):
return math.sqrt(square(a) + square(b))

hypotenuse(3, 4) 5.0
hypotenuse(1, 1) 1.4142135623730951

Concepts in this slide:
User-defined functions can
call other user-defined
functions.

17Functions

Functions calling functions
The function hypotenuse calls the square function we just defined.
import math

def hypotenuse(a, b):
return math.sqrt(square(a) + square(b))

hypotenuse(3, 4) 5.0
hypotenuse(1, 1) 1.4142135623730951

Concepts in this slide:
User-defined functions can
call other user-defined
functions.

def distanceBetweenPoints(x1, y1, x2, y2):
"""Calculate the distance between points """
return hypotenuse(x2-x1, y2-y1)

18Functions

The function distanceBetweenPoints calls the hypotenuse
function defined above.

Function call model for hypotenuse(3,4) [1]
hypotenuse(3,4)

return math.sqrt(square(a) + square(b))

a 3

hypotenuse frame

b 4

return math.sqrt(square(3) + square(b))

a 3

hypotenuse frame

b 4

return x*x

x 3

square frame

return 3*3

x 3

square frame

return 9

x 3

square frame

19Functions

Function call model for hypotenuse(3,4) [2]

return math.sqrt(9 + square(b))

a 3

hypotenuse frame

b 4

return x*x

x 4

square frame

return 4*4

x 4

square frame

return 16

x 3

square frame

return math.sqrt(9 + square(4))

a 3

hypotenuse frame

b 4

20Functions

Function call model for hypotenuse(3,4) [3]

return math.sqrt(9 + 16)

a 3

hypotenuse frame

b 4

return math.sqrt(25)

a 3

hypotenuse frame

b 4

return 5.0

a 3 b 4

hypotenuse frame

5.0

21Functions

LOCAL VARIABLES

Functions 22

Local variables

Local variables exist only
within a function’s body.
They cannot be referred
outside of it.

def rightTrianglePerim(a, b):
c = hypotenuse(a, b)
return a + b + c

In [1]: rightTrianglePerim(3, 4)
Out [1]: 12.0

In [2]: c
NameError: name 'c' is not defined

In [3]: a
NameError: name 'a' is not defined

In [4]: b
NameError: name 'b' is not defined

Parameters are also local
variables that are assigned
a value when the function
is invoked. They also
cannot be referred
outside the function.

An assignment to a variable
within a function definition
creates/changes a local
variable.

Concepts in this slide:
local variables

23Functions

Local variables in the Frame Model
How do local variables work within the function frame model?

Consider the function below which calculates the length of the
hypotenuse of a right triangle given the lengths of the two
other sides.

def hypotenuse2(a,b):
sqa = square(a)
sqb = square(b)
sqsum = sqa + sqb
return math.sqrt(sqsum)

24Functions

Functions w/local variables: hypotenuse2 [1]
def hypotenuse2(a,b):

sqa = square(a)
sqb = square(b)
sqsum = sqa + sqb
return math.sqrt(sqsum)

hypotenuse2(3,4)

sqa = square(a)
sqb = square(b)
sqsum = sqa + sqb
return math.sqrt(sqsum)

a 3

hypotenuse2

b 4

sqa = square(3)
sqb = square(b)
sqsum = sqa + sqb
return math.sqrt(sqsum)

a 3

hypotenuse2

b 4

return x*x

x 3

square frame

return 3*3

x 3

square frame

return 9

x 3

square frame

25Functions

(continues on the next page)

Functions w/local variables: hypotenuse2 [2]

sqa = 9
sqb = square(b)
sqsum = sqa + sqb
return math.sqrt(sqsum)

a 3 b 4

sqa = 9
sqb = square(b)
sqsum = sqa + sqb
return math.sqrt(sqsum)

a 3 b 4 sqa 9

sqa = 9
sqb = square(4)
sqsum = sqa + sqb
return math.sqrt(sqsum)

a 3 b 4 sqa 9

return x*x

x 4

square frame

return 4*4

x 4

square frame

return 16

x 4

square frame

26Functions

(continues on the next page)

Functions w/local variables: hypotenuse2 [3]

sqa = 9
sqb = 16
sqsum = sqa + sqb
return math.sqrt(sqsum)

a 3 b 4

sqa = 9
sqb = 16
sqsum = sqa + sqb
return math.sqrt(sqsum)

a 3 b 4 sqa 9sqa 9 sqb 16

sqa = 9
sqb = 16
sqsum = 9 + sqb
return math.sqrt(sqsum)

a 3 b 4 sqa 9 sqb 16
sqa = 9
sqb = 16
sqsum = 9 + 16
return math.sqrt(sqsum)

a 3 b 4 sqa 9 sqb 16

27Functions

(continues on the next page)

Functions w/local variables: hypotenuse2 [4]

sqa = 9
sqb = 16
sqsum = 25
return math.sqrt(sqsum)

a 3 b 4 sqa 9 sqb 16

sqa = 9
sqb = 16
sqsum = 25
return math.sqrt(sqsum)

a 3 b 4 sqa 9 sqb 16

sqsum 25

sqa = 9
sqb = 16
sqsum = 25
return math.sqrt(25)

a 3 b 4 sqa 9 sqb 16

sqsum 25

sqa = 9
sqb = 16
sqsum = 25
return 5.0

a 3 b 4 sqa 9 sqb 16

sqsum 25

5.0

28Functions

RETURN VS. PRINT

Functions 29

Output of a function:
return vs. print :

In [2]: square(3) + square(4)
Out[2]: 25

In [3]: squarePrintArg(3) + squarePrintArg(4)
The argument of square is 3
The argument of square is 4
Out[3]: 25

def square(x):
return x*x

def squarePrintArg(x):
print('The argument of square is ' + str(x))
return x*x

• return specifies the result of the function invocation

• print causes characters to be displayed in the shell (side effect).

Concepts in this slide:
return and print are
different!

30Functions

Don’t confuse return with print!
def printSquare(a):
print('square of ' + str(a) + ' is ' + str(square(a)))

printSquare does not return a
number, so it doesn’t make sense to
add the two invocations!

In [4]: printSquare(5)
square of 5 is 25

In [5]: printSquare(3) + printSquare(4)
square of 3 is 9
square of 4 is 16
--
TypeError Traceback (most recent call last)
<ipython-input-10-ff81dee8cf8f> in <module>()
----> 1 printSquare(3) + printSquare(4)

Concepts in this slide:
return and print are
different!

31Functions

The None value and NoneType

Python has a special None value (of type NoneType), which Python normally
doesn’t print.

In [2]: None

In [3]: type(None)
Out[3]: NoneType

In [4]: None + None
--
TypeError Traceback (most recent call last)
<ipython-input-7-28a1675638b9> in <module>()
----> 1 None + None

TypeError: unsupported operand type(s) for +: 'NoneType' and
'NoneType'

32Functions

Concepts in this slide:
None is a type in Python

The None value and NoneType
A function without an explicit return statement actually returns the None value!

def printSquare(a):
print('square of ' + str(a) + ' is ' + str(square(a)))

Is treated as if it were written as

def printSquare(a):
print('square of ' + str(a) + ' is ' + str(square(a)))
return None

This is the real reason that the expression
printSquare(3) + printSquare(4) causes an error.

33Functions

Concepts in this slide:
None is a type in Python

Fruitful vs. None Functions
We call functions that return the None value None functions*. None
functions are invoked to perform an action (e.g. print characters), not to
return a result.

We will call functions that return a value (other than None) fruitful
functions. Fruitful functions return a meaningful value.
Additionally, they may also perform an action.

int
square
square_print
hypotenuse

Fruitful functions
print
help
printSquare

None functions

* In Java (another programming language), methods that don’t return a value are void
methods. We sometimes use “void functions” as a synonym for “None functions”

34Functions

Concepts in this slide:
Two classes of functions

Incremental Development

When writing your own functions or any other type of code, do not
attempt to write it all at once!

Instead, develop code in a sequence of incremental steps, each of which
makes a small amount of progress toward the final goal. Test each step
to make sure it works before proceeding to the next step.

Store longer expressions into variables with meaningful names, and
reference those variables later in your code. (Examples on the next slide)

Concepts in this slide:
Incremental Development

35Functions

Incremental Development
Concepts in this slide:
Incremental Development

def numStats(num1, num2):
print the two numbers
print("num1 is", num1, "and num2 is", num2)

Example: create a function
named numStats that
takes in two numbers,
prints out the two numbers
with their average, and
returns the product of the
two numbers.

Step 1: First, create the function header and print the arguments

Step 2: Next, calculate and print the average of the two numbers
def numStats(num1, num2):

print the two numbers with their average
average = (num1+num2)/2
print("The average of", num1, "and", num2,

"is", average + "."))

36Functions

Step 3: Finally, return the product of the two numbers
def numStats(num1, num2):

print the two numbers with their average
average = (num1+num2)/2
print("The average of", num1, "and", num2,

"is", average + "."))
return the product of the two numbers
product = num1 * num2
return product

FUNCTIONS AND TURTLES

Functions 37

turtle moves forward by dist
turtle moves backward by dist
turtle turns left angle degrees
turtle turns right angle degrees
(pen up) turtle raises pen in belly
(pen down) turtle lower pen in belly
sets the thickness of turtle's pen to width
sets the color of turtle's pen to color
sets the turtle's shape to shp
turtle returns to (0,0) (center of screen)
delete turtle drawings; no change to turtle's state
delete turtle drawings; reset turtle's state
create a turtle window of given width and height

Turtle Graphics

Python has a built-in module named turtle. See the Python turtle
module API for details.

Use from turtle import * to use these commands:

fd(dist)
bk(dist)
lt(angle)
rt(angle)
pu()
pd()
pensize(width)
pencolor(color)
shape(shp)
home()
clear()
reset()
setup(width,height)

38Functions

Concepts in this slide:
Useful functions from the
turtle module.

https://docs.python.org/2/library/turtle.html

turtle moves to x,y coordinate without drawing
turtle moves forward by dist without drawing
turtle along the x-axis by dist without drawing
draws a circle centered on the current turtle position
draws ellipse with x radius r1 and y radius r2
draws filled with radius size radius
sets font size to size
resets everything including window title and background
turns off animation
turns on animation
updates the display
returns random color name as a string from a fixed set
returns random color name as a string from fixed warm hues

turtleBeads

In CS111, we use a custom module called turtleBeads which allow
us to teleport, draw simple shapes, and more:
https://cs111.wellesley.edu/reference/quickref/#turtle
Use from turtleBeads import * to use these commands:

teleport(x,y)
leap(dist)
hop(dist)
drawCircle(radius)
drawEllipse(r1, r2)
drawDot(radius)
fontsize(size)
setupTurtle()
noTrace()
doTrace()
showPicture()
randomPastelColor()
randomWarmColor()

39Functions

Concepts in this slide:
Useful functions from the
turtle module.

https://cs111.wellesley.edu/reference/quickref/

A Simple Example with Turtles

from turtle import *

setup(400,400)
fd(100)
lt(60)
shape('turtle')
pencolor('red')
fd(150)
rt(15)
pencolor('blue')
bk(100)
pu()
bk(50)
pd()
pensize(5)
bk(250)
pensize(1)
home()
exitonclick()

Functions 40

Concepts in this slide:
The only two commands
that draw lines are fd and
bk.

Tk window
The turtle module has its own graphics
environment that is created when we call the
function setup. All drawing happens in it.

Turtle Functions
Functions help make code for turtle graphics more concise and simple.

Making more stars is as
simple as calling the
function multiple times.

41Functions

star(0, 100, 100)
star(200, 100, 200)
star(-200, 100, 200)

def star(startX, startY, length):
teleport(startX, startY)
rt(72)
fd(length)
rt(144)
fd(length)
rt(144)
fd(length)
rt(144)
fd(length)
rt(144)
fd(length)
rt(72)

The body of the function captures the
similarities of all stars while the
parameters express the differences.

Fish Tank
To make the fish tank shown on the
opening slide and the next slide, we
need to amend the code on the left
so that it can produce fishes of
different size, orientation and color.
How can we do that? Use
parameters to capture the differences
and keep the body of the code that
captures the similarities. See lecture
code solution for answers! The new
function header is given below as a
start!

42Functions

def staticFish():
Make the body
fillcolor("yellow")
begin_fill()
drawEllipse(50, 2)
end_fill()
Make the eye
penup()
fd(50)
lt(90)
fd(15)
rt(90)
pendown()
fillcolor("black")
begin_fill()
drawCircle(10)
end_fill()
SOME CODE OMITTED.
SEE NOTEBOOK.

def fish(bodyColor, tailColor, x, y, scale, angle):

Fish Tank

43Functions

fish("purple", "blue", -200,
-200, 1, 0)

fish("yellow", "green",
-175, 200, 1.5, 45)

fish("blue", "red", 100,
100, 0.5, -45)

fish("orange", "purple",
150, -150, 1.5, -60)

Fruitful Turtles

44Functions

def trianglePlusPerimeter(size):
rt(60)
fd(size)
rt(120)
fd(size)
rt(120)
fd(size)
rt(60)
return size * 3

reset()
setupTurtle()
trianglePlusPerimeter(50)

We say a function is fruitful if
it returns a value. See slide 34
for more info!

With turtle graphics, we often
make a function fruitful if we
want to return some statistic
about the shape or picture we
drew. The code on the right
draws a triangle but also
returns the perimeter of the
triangle!

Return the perimeter of the triangle
after it has been drawn.

OTHER TYPES OF
FUNCTIONS

Functions 45

Zero-Parameter Functions
Sometimes it’s helpful to define/use functions that have zero
parameters. Note: you still need parentheses after the function
name when defining and invoking the function.

def rocks():
print('CS111 rocks!')

def rocks3():
rocks()
rocks()
rocks()

CS111 rocks!

Invoking rocks()

CS111 rocks!
CS111 rocks!
CS111 rocks!

Invoking rocks3()

Python libraries have useful built-in functions with zero
parameters and a return value:
import random
random.random()

Out […]
0.72960321

A random float value
between 0 and 1.

46Functions

Updated Function diagrams
max(), min()
square()
hypotenuse()

print(), help()
verse()
printBanner()
printSquare()

input(),
squarePrintArg()

random.random()

rocks()
rocks3()

47Functions

4848

Zero-Parameter Functions (continued)

We haven’t seen an example yet of our
last function diagram. There are no
built-in functions that fulfill this
contract.

Exercise: Can you write a function that
takes no input and produces a side-
effect while returning a value?

Hint: printing is always a good way to
produce a side-effect! Try and write a
meaningful function that would fulfill
these two criteria.

Functions

Visualizing Code Execution with the Python Tutor

Python Tutor: http://www.pythontutor.com/visualize.html

It automatically shows many (but not all) aspects of
our CS111 Python function call model.

49Functions

http://www.pythontutor.com/visualize.html

Test your knowledge
1. What is the difference between a function definition and a function call?
2. What is the difference between a parameter and an argument? In what

context is each of them used?
3. Is it OK to use the same parameter names in more than one function

definition? Why or why not?
4. Can a function have a return value and no side effects? Side effects and no

return value? Both side effects and a return value?
5. Can a function whose definition lacks a return statement be called

within an expression?
6. What is the value of using the function call model?
7. What is indentation and where it is used within Python?
8. Can a turtle function both draw and return a value?
9. How do functions relate to the idea of abstraction?

50Functions

