Working with Different File
Formats

CS111 Computer Programming

Department of Computer Science

Wellesley College

How to create a dictionary from a text file?

The first 6 lines from the file us-states.txt in today’s
code folder.

Alabama is home to 4921532 people.
Alaska is home to 731158 people.
Arizona is home to 7421401 people.
Arkansas is home to 3030522 people.
California is home to 39368078 people.
Colorado is home to 5807719 people.

Partial view of the dictionary statesDct created
from the file us-states.txt.

In [9]: 1 statesDct

Out[9]: {'Alabama': 4921532,
'Alaska': 731158,
'Arizona': 7421401,
'Arkansas': 3030522,
'California': 39368078,
'Colorado': 5807719,
'Connecticut': 3557006,

Can we save this dictionary into a file, so that we can reuse it in other programs?

In [12]: 1 with open('statesPopulation.txt', 'w') as outFile:
2 outFile.write(statesDct)

Trying to save the
dictionary into a file doesn’t
work immediately, because

TypeError Traceback (most recent call last) the method write expects

<ipython-input-12-38b023f6916d> in

1 with open('statesPopulation.txt', 'w') as outFile:

— 2 outFile.write(statesDct)

TypeError: write() argument must be str, not dict

In [13]: 1 with open('statesPopulation.txt', 'w') as outFile:
2 outFile.write(str(statesDct))

In []: 1

a string argument.

Converting to a string
before writing into the file
does the trick, file writing is

successful. File Formats 19-2

Can we read the dictionary from the file?

Partial screenshot of the file statesPopulation.txt that contains the dictionary, statesDct.

{'Alabama': 4921532, 'Alaska': 731158, 'Arizona': 7421401,
"Arkansas’': 3030522, 'California’': 39368078, 'Colorado’': 5807719,
"Connecticut’': 3557006, 'Delaware': 986809, 'Florida': 21733312,

We can read the content from the file, but when we do so, the result is a big string:

In [14]: 1 with open('statesPopulation.txt') as inputFile:
2 statesDct2 = inputFile.read()

In [15]: 1 type(statesDct2)
Out[15]: str

Since we want to work with a dictionary type, we can try to convert this string into a dictionary, as we
converted the dictionary into a string,

Takeaway:
In [16]: 1 statesDct3 = dict(statesDct2) . .
It is not a good idea to save a
ValueError Traceback (most recent call last) dictionary into a text file
<ipython-input-16-387b65aef271> in .
-———> 1 statesDct3 = dict(statesDct2) (which only stores values as
ValueError: dictionary update sequence element #@ has length 1; 2 is required strings), because there is no

easy way to convert a string
It didn’t work! This is because dict expects at least one pair (key, value)

o back into a dictionary.
to create a dictionary.

File Formats 19-3

Concepts in this slide:

JSON to the rescue! New module json with

two useful functions.

JSON (JavaScript Object Notation) is a standard format for encoding as a string
(possibly nested) lists and dictionaries whose elements are numbers/strings/booleans.

In []: import Jjson
In []: with open('statesPopulation.json', 'w') as outF:
json.dump (statesDct, outF)

In []: with open('statesPopulation.json', 'r') as inF:
statesDct2 json.load (inF)

In []: statesDct2 == statesDct
Out[]: True

To notice:
The module json has two functions to deal with files: dump and

load. The function dump is used to write data into a file, and the
function 1load is used to read data from a file. They both take as
an argument a file object created with the built-in function open.

File Formats 19-4

Example: Tweets are stored in JSON format

’ Developer Platform Products - Use cases v Docsv ~ Community v Updatesv Support Apply Sign in Q

Tweet:

Documentation

Twitter Dev & . 4
1/ Today we're sharing our vision for the future of the
Twitter API platform!
4 > Twitter API cards.twitter.com/cards/18ce53wg...

11:24 AM - Apr 6, 2017 ®

493 45 & Copy link to Tweet
Getting started Q 9 & Copy

Tweet your reply
Tutorials

Tools and libraries
The following JSON illustrates the structure for these objects and some of their attributes:

Migrate
1 {
API reference index 9
3 ,
4
5 {
The new Twitter API 6 ,
7 ,
Fundamentals 8)
9 ,
Tweets 10 ;
11
Users 12 1,
13 {
Spaces 14 1,
15 {
Lists 16 L

]
n

Compliance

File Formats 19-5

The CSV Format

(CSV = Comma Separated Values)

State,StatePop,Abbrev.,Capital,CapitalPop
Alabama,4921532,AL,Montgomery,198525
Alaska,731158,AK,Juneau,32113
Arizona,7421401,AZ,Phoenix,1680992
Arkansas,3030522,AR,Little Rock,197312
California,39368078,CA,Sacramento,513624
Colorado,5807719,C0,Denver,727211

State
Alabama
Alaska
Arizona
Arkansas
California

N oo bW N =

Colorado

B c
StatePop Abbrev.
4921532 AL

731158 AK
7421401 AZ
3030522 AR

39368078 CA
5807719 CO

D E
Capital CapitalPop
Montgomery 198525
Juneau 32113
Phoenix 1680992
Little Rock 197312
Sacramento 513624
Denver 727211

Partial screenshot of the us-states-
more.csv file, viewed with a text editot.

Partial screenshot of the us-states-
more.csv file, viewed with the Google
Spreadsheet editor.

CSV files are one of the most common formats to share data, since they can be displayed
as a table in spreadsheet applications (Microsoft Excel, Google Spreadsheet, etc.).

File Formats

19-6

Reading tuples from CSV files

def tuplesFromFile(filename):
'"'"'Read each line from opened file,
strip white space,
split at commas,
convert as tuple and
return a list of tuples.
with open(filename, 'r') as inputFile:
theTuples = [tuple(line.strip().split(', "))

for line in inputFile]
return theTuples

To notice:
We are using a list comprehension to read the content of the

files into a list of tuples. This statement replaces this code:

theTuples = []
for line in inputFile:
theTuples.append(tuple(line.strip().split(',"')))

File Formats 19-7

What happens when our data has commas?

A B & R 2 Partial screenshot of the us-states-
1 State StatePop Abbrev. Capital CapitalPop more.csv file, viewed with the Google
2 | Alabama 4921532 AL Montgomery 198525 Spreadsheet editor.
3 Alaska 731158 AK Juneau 32113
4 Arizona 7421401 AZ Phoenix 1680992
5 Arkansas 3030522 AR Little Rock 197312
6 | California 39368078 CA Sacramento 513624
7 Colorado 5807719 CO Denver 727211
with open("capitals-only.csv", "w") as outF:
) . for item in capitals:
row = f"{item[0]}, {item[1]}\n"
1 Montgomery, AL 198525 tF.write (FOW)
2 Juneau, AK 32113 LT
3 Phoenix, AZ 1680992
4 Little Rock, AR 197312 capitals2 = tuplesFromFile("capitals-only.csv")
5 Sacramento, CA 513624 capitals == capitals2
6 Denver, CO 727211
7 Hartford, CT 122105 False
Partial screenshot of the capitals-only.csv Check the Notebook

file, viewed with the Google Spreadsheet editor. It’s easy to create the file about capitals

from the state data, but when we read it
back using the function tuplesFromFile,
the result has tuples of three values, not
two, as we desire.

File Formats 19-8

The c¢sv module

The csv module has four functions that create special objects to read/write CSV files.

csv.reader creates an object that reads the content of CSV file as a list of lists
csv.writer creates an object that writes a list of lists into a CSV file

csv.DictReader creates an object that reads the content of CSV file as a list of
dictionaries

csv.DictWriter creates an object that writes a list of dictionaries into a CSV file

All the created objects are associated with a file object and can be operated upon only
when the file object 1s open. Otherwise, we’ll get an error, as shown below:

In [86]: import csv
with open('testFile.csv', 'w') as outputF:
writer = csv.writer(outputF)

writer

Out[86]: <_csv.writer at 0x7ff5582a4590>

In [87]: writer.writerow(['name', 'town', 'state'l)

ValueError Traceback (most recent call last)
<ipython-input-87-50c2ee79flfa> in
-————> 1 writer.writerow(['name', 'town', ‘'state'l])

ValueError: I/0 operation on closed file.

File Formats 19-9

Examples of using the c¢sv module [1]

Writing to a file using csv.writer and its methods writerows() and writerow()

All rows in this file will be the data about the US capitals (everything stored in the list capitals.

In [37]: with open("capitals—fixed.csv", "w") as outF:
writer = csv.writer(outF) # create an csv.writer object tied to the file object opened for writing
writer.writerows(capitals) # call method writerows to write a list into the file object

The first row in this file will contain the names of the columns.

In [44]: with open("capitals—column-names.csv", "w") as outF:
create an instance of writer object

writer = csv.writer(outF)
writer.writerow(["Capital, Abbr", "Population"]) # call method writerow to write a single row
call method writerows to write a list into the file object

writer.writerows(capitals)

Reading a list of lists or a list of tuples from using csv.reader

Reads the content of the opened file as a list of lists.
In [39]: with open("capitals-fixed.csv", "r") as inF:
create a csv.reader object tied to the file object opened for reading

reader = csv.reader(inF)
capitals3 = list(reader) # the function list forces reader to iterate and read its content
this is similar to what we do to the range() object.

Reads the content of the opened file as a list of tuples, using list comprehension.

In [42]: with open("capitals-fixed.csv", "r") as inF:

reader = csv.reader(inF)
capitals4 = [tuple(row) for row in reader] # read each row and convert it to a tuple

File Formats 19-10

Examples of using the c¢sv module [2]

Reading from a file using csv.DictReader
This code will read from a CSV file into a list of dictionaries, each one corresponding to a row.

In [47]: with open("capitals—column-names.csv", "r") as inF:
dctReader = csv.DictReader(inF) # create an object of the csv.DictReader tied to the file object

dctRows = list(dctReader) # read the content of dctReader, forcing it to iterate
Each element of a list is a dictionary of a special kind, known in Python as an OrderedDict.

In [49]: oneRow = dctRows[0]
oneRow

Out[49]: OrderedDict([('Capital, Abbr', 'Montgomery, AL'), ('Population', '198525')])
Writing a list of dictionary using csv.DictWriter

We can rearrange the order of columns and pass them as an argument to csv.DictWriter. Notice
that csv.DictWriter has a special method to write the header (first row) of a CSV file.

In [55]: columns = ['Abbrev.', 'State', 'Capital', 'CapitalPop', 'StatePop'l]

In [56]: with open("us-states-rearranged.csv", "w") as outF:

writer = csv.DictWriter(outF, fieldnames=columns)
writer.writeheader() # this method doesn't need an argument, it uses the fieldnames parameter

writer.writerows(statesList) # writes the list of dictionaries into the file object

File Formats 19-11

AR R A

&

10.

Test your knowledge

What do the acronyms JSON and CSV stand for?

In what ways do these two formats differ from one another?

Which format allows programmers more flexibility in transferring data? Why?
What do the two functions dump and load of the json module do?

What is the difference between csv.reader and csv.DictReader?

What is the difference between csv.writer and csv.DictWriter?

When might it be useful to use the csv.writer method writerow?

What 1s the role of 1ist in the expression: 1ist (reader) |[Slide 10, cell 39]
What does the method writeheader do?

What is the advantage of using csv.DictWriter over csv.writer?

File Formats 19-12

