
CS111 Computer Programming

Department of Computer Science
Wellesley College

Working with Different File
Formats

How to create a dictionary from a text file?

File Formats 19-2

The first 6 lines from the file us-states.txt in today’s
code folder.

Partial view of the dictionary statesDct created
from the file us-states.txt.

Can we save this dictionary into a file, so that we can reuse it in other programs?

Trying to save the
dictionary into a file doesn’t
work immediately, because
the method write expects
a string argument.

Converting to a string
before writing into the file
does the trick, file writing is
successful.

Can we read the dictionary from the file?

File Formats 19-3

We can read the content from the file, but when we do so, the result is a big string:

Partial screenshot of the file statesPopulation.txt that contains the dictionary, statesDct.

Since we want to work with a dictionary type, we can try to convert this string into a dictionary, as we
converted the dictionary into a string.

Takeaway:
It is not a good idea to save a
dictionary into a text file
(which only stores values as
strings), because there is no
easy way to convert a string
back into a dictionary.It didn’t work! This is because dict expects at least one pair (key, value)

to create a dictionary.

JSON to the rescue!
JSON (JavaScript Object Notation) is a standard format for encoding as a string
(possibly nested) lists and dictionaries whose elements are numbers/strings/booleans.

In []: import json
In []: with open('statesPopulation.json', 'w') as outF:

json.dump(statesDct, outF)

In []: with open('statesPopulation.json', 'r') as inF:
statesDct2 = json.load(inF)

In []: statesDct2 == statesDct
Out[]: True

File Formats 19-4

To notice:
The module json has two functions to deal with files: dump and
load. The function dump is used to write data into a file, and the
function load is used to read data from a file. They both take as
an argument a file object created with the built-in function open.

Concepts in this slide:
New module json with
two useful functions.

19-5

Example: Tweets are stored in JSON format

File Formats

The CSV Format

File Formats 19-6

Partial screenshot of the us-states-
more.csv file, viewed with a text editor.

(CSV = Comma Separated Values)

CSV files are one of the most common formats to share data, since they can be displayed
as a table in spreadsheet applications (Microsoft Excel, Google Spreadsheet, etc.).

Partial screenshot of the us-states-
more.csv file, viewed with the Google
Spreadsheet editor.

Reading tuples from CSV files

File Formats 19-7

def tuplesFromFile(filename):
'''Read each line from opened file,
strip white space,
split at commas,
convert as tuple and
return a list of tuples.
'''
with open(filename, 'r') as inputFile:

theTuples = [tuple(line.strip().split(','))
for line in inputFile]

return theTuples

To notice:
We are using a list comprehension to read the content of the
files into a list of tuples. This statement replaces this code:

theTuples = []
for line in inputFile:

theTuples.append(tuple(line.strip().split(',')))

What happens when our data has commas?

File Formats 19-8

Check the Notebook
It’s easy to create the file about capitals
from the state data, but when we read it
back using the function tuplesFromFile,
the result has tuples of three values, not
two, as we desire.

Partial screenshot of the us-states-
more.csv file, viewed with the Google
Spreadsheet editor.

Partial screenshot of the capitals-only.csv
file, viewed with the Google Spreadsheet editor.

The csv module

File Formats 19-9

The csv module has four functions that create special objects to read/write CSV files.

csv.reader creates an object that reads the content of CSV file as a list of lists
csv.writer creates an object that writes a list of lists into a CSV file
csv.DictReader creates an object that reads the content of CSV file as a list of

dictionaries

csv.DictWriter creates an object that writes a list of dictionaries into a CSV file

All the created objects are associated with a file object and can be operated upon only
when the file object is open. Otherwise, we’ll get an error, as shown below:

Examples of using the csv module [1]

File Formats 19-10

Writing to a file using csv.writer and its methods writerows() and writerow()

All rows in this file will be the data about the US capitals (everything stored in the list capitals.

The first row in this file will contain the names of the columns.

Reading a list of lists or a list of tuples from using csv.reader
Reads the content of the opened file as a list of lists.

Reads the content of the opened file as a list of tuples, using list comprehension.

Examples of using the csv module [2]

File Formats 19-11

Reading from a file using csv.DictReader

This code will read from a CSV file into a list of dictionaries, each one corresponding to a row.

Each element of a list is a dictionary of a special kind, known in Python as an OrderedDict.

Writing a list of dictionary using csv.DictWriter
We can rearrange the order of columns and pass them as an argument to csv.DictWriter. Notice
that csv.DictWriter has a special method to write the header (first row) of a CSV file.

Test your knowledge

1. What do the acronyms JSON and CSV stand for?
2. In what ways do these two formats differ from one another?

3. Which format allows programmers more flexibility in transferring data? Why?

4. What do the two functions dump and load of the json module do?
5. What is the difference between csv.reader and csv.DictReader?

6. What is the difference between csv.writer and csv.DictWriter?
7. When might it be useful to use the csv.writer method writerow?

8. What is the role of list in the expression: list(reader) [Slide 10, cell 39]

9. What does the method writeheader do?
10. What is the advantage of using csv.DictWriter over csv.writer?

File Formats 19-12

