
CS111 Computer Programming

Department of Computer Science
Wellesley College

CSV Format/Real-world Data

Recap: File Formats so far
One way to provide input for our programs is through files that store data.
So far we have seen how to work with two file formats: TXT files and JSON files.
In both cases, we have to create first a fileObject that refers to a file that is open for either
reading or writing (e.g., fileObjR and fileObjW).

CSV Format / Real world data 2

Operation Python syntax
Reading text
from a file

fileObjR.read()
fileObjR.readline()
fileObjR.readlines()

Writing text
into a file

fileObjW.write(aStr)

Operation Python syntax

Loading a JSON
object from a file

json.load(fileObjR)

Dumping a JSON
object into a file

json.dump(obj,
fileObjW)

Operations for working
with TXT files

Operations for working
with JSON files

with open(filePath, 'r') as fileObjR:
do reading/loading operation

with open(filePath, 'w') as fileObjW:
do writing/dumping operation

The CSV Format

Partial screenshot of the us-states-
more.csv file, viewed with a text editor.

(CSV = Comma Separated Values)

CSV files are one of the most common formats to share data, since they can be displayed
as a table in spreadsheet applications (Microsoft Excel, Google Spreadsheet, etc.).

Partial screenshot of the us-states-
more.csv file, viewed with the Google
Spreadsheet editor.

Concepts in this slide:
Introducing a new file
format for tabular data.

CSV Format / Real world data 3

Reading tuples from CSV files
def tuplesFromFile(filename):

'''Read each line from opened file,
strip white space,
split at commas,
convert as tuple and
return a list of tuples.
'''
with open(filename, 'r') as inputFile:

theTuples = [tuple(line.strip().split(','))
for line in inputFile]

return theTuples

To notice:
We are using a list comprehension to read the content of the
files into a list of tuples. This statement replaces this code:

theTuples = []
for line in inputFile:

theTuples.append(tuple(line.strip().split(',')))

For simple CSV files,
we can write our own
function to read its
content.

CSV Format / Real world data 4

What happens when our data has commas?

Check the Notebook
It’s easy to create the file about capitals
from the state data, but when we read it
back using the function tuplesFromFile,
the result has tuples of three values, not
two, as we desire.

Partial screenshot of the us-states-
more.csv file, viewed with the Google
Spreadsheet editor.

Partial screenshot of the capitals-only.csv
file, viewed with the Google Spreadsheet editor.

CSV Format / Real world data 5

The csv module
The csv module has four functions that create special objects to read/write CSV files.

csv.reader creates an object that reads the content of CSV file as a list of lists
csv.writer creates an object that writes a list of lists into a CSV file
csv.DictReader creates an object that reads the content of CSV file as a list

of dictionaries
csv.DictWriter creates an object that writes a list of dictionaries into a CSV

file

Important Note
In CS111, we will only be covering
DictReader and DictWriter, since they
help us work with dictionaries.

CSV Format / Real world data 6

csv.DictReader [1]

with open('countries.csv', 'r') as inputFile:
dctReader = csv.DictReader(inputFile)
rows = [row for row in dctReader] # read line by line
print(inputFile)
print(dctReader)
print(rows)

<_io.TextIOWrapper name= ' countries.csv' mode='r' encoding='UTF-8'>
<csv.DictReader object at 0x7f84901a4c10>

[{'country': 'Canada', 'capital': 'Ottawa'}, {'country': 'Mexico',
'capital': 'Mexico City'}, {'country': 'South Korea', 'capital': 'Seoul'},
{'country': 'Ukraine', 'capital': 'Kiev'}]

Differently from reading/loading TXT and JSON files, reading a CSV file as a
dictionary is a two step process:
1. Create a DictReader object that is tied to the file object open for reading
2. Read and convert each line from the text file as a dict object

CSV Format / Real world data 7

The DictReader object

The file object

csv.DictReader [2]

dctReader = csv.DictReader(inputFile)
rows = [row for row in dctReader]

csv.DictReader creates an iterator object that reads lines into dictionaries only
when we “force” it to do the work through iteration.

This is very similar to how the range object behaves:

CSV Format / Real world data 8

csv.DictWriter
Writing a dictionary into a CSV file involves the following steps:
1. Create a DictWriter object tied to a file open for writing
2. Write the header of the file, which contains the names of the columns
3. Write all dictionaries as rows in the files

CSV Format / Real world data 9

oscarMovies = [{'title': 'CODA', 'year': 2022},
{'title': 'Nomadland', 'year': 2021},
{'title': 'Parasite', 'year': 2020}]

columns = oscarMovies[0].keys() # get the names of the keys

with open('oscarWinners.csv', 'w', newline='') as outFile:
dctWriter = csv.DictWriter(outFile, fieldnames=columns)
dctWriter.writeheader() # no need for argument
dctWriter.writerows(oscarMovies)

More examples
Check the notebook for examples to
understand what writeheader,
writerows, and one method not shown
here, writerow, do.

Additional Parameters
Notice that we have added a third parameter
to the open function: newline=''
This is needed to deal with the different way
that Windows machines deal with newlines.

CSV Format / Real world data 10

Representation in Congress is based on
population. More people, more seats.

CSV Format / Real world data 11

US States and Capitals: Doing more with our data

Partial screenshot of the us-states-more.csv file,
viewed with the Google Spreadsheet editor.

Some questions to answer with our data:

- Which are the most populated US states? Rank the data in that order.
- Which are the least populated US states? Rank the data in that order.
- Which US state capitals are the most populated? Rank the data in that order.
- Which US state capitals are the least populated? Rank the data in that order.
- What percentage of each US state’s population lives in the state capital? Rank

the data by that percentage from the largest to the smallest.

CSV Format / Real world data 12

Can dictionaries be sorted? Explain the outputs!
In [31]: fruitColors = {"banana": "yellow", "kiwi":
"green", "grapes": "purple", "apple": "red",
"lemon": "yellow", "pomegranate": "red"}
In [32]: sorted(fruitColors)
Out[32]: ['apple', 'banana', 'grapes', 'kiwi',
'lemon', 'pomegranate']
In [33]: sorted(fruitColors.keys())
Out[33]: ['apple', 'banana', 'grapes', 'kiwi',
'lemon', 'pomegranate']
In [34]: sorted(fruitColors.values())
Out[34]: ['green', 'purple', 'red', 'red', 'yellow',
'yellow']
In [35]: sorted(fruitColors.items())
Out[35]: [('apple', 'red'), ('banana', 'yellow'),
('grapes', 'purple'), ('kiwi', 'green'), ('lemon',
'yellow'), ('pomegranate', 'red')]

CSV Format / Real world data 13

Sort a list of dictionaries

In [36]: peopleDctList = [{'name':'Mary Beth Johnson', 'age': 18},

{'name':'Ed Smith', 'age': 17},

{'name':'Janet Doe', 'age': 25},

{'name':'Bob Miller', 'age': 31}]
In [37]: sorted(peopleDctList)
Traceback (most recent call last):

File "<pyshell>", line 1, in <module>

TypeError: '<' not supported between instances of 'dict' and 'dict'

def byAge(personDct):
return personDct['age']

In [38]: sorted(peopleDctList, key=byAge, reverse=True)
Out[38]: [{'name': 'Bob Miller', 'age': 31},

{'name': 'Janet Doe', 'age': 25},
{'name': 'Mary Beth Johnson', 'age': 18},
{'name': 'Ed Smith', 'age': 17}]

CSV Format / Real world data 14

Questions 1 & 2: Sort by US state population

How to implement the solution with Python code:

1. Read the content of the CSV file us-states-more.csv using
csv.DictReader, which returns a list of dictionaries.

2. Create a helper function byStatePop, which, given a dictionary with state data (one row
from our file), returns the appropriate value. Remember that all values in the dictionary
are strings, because they come from the CSV file.

3. Apply the sorted function to the list of dictionaries of state data, using the key
parameter with the function byStatePop.

4. Look at the results, in which way are they sorted?
5. Include the function parameter reverse to change the order of sorting.
6. Use f-string formatting to print out top six results as shown below.

CSV Format / Real world data 15

Questions 3 &4: Sort by capital population

How to implement the solution with Python code:

Follow the steps from the previous slide, but create appropriate functions to use with the
parameter key for sorted. Try to come as close as possible to these outputs, but don’t worry
if you cannot. These outputs use some special f-string features for formatting.

CSV Format / Real world data 16

Questions 5: Sort by percentage

How to implement the solution with Python code:

This will be similar to the two previous slides, by you’ll have to create a helper function,
byPercentage, which can calculate the percentage of people living in the capital of the
state. This function will be used by the sorted function, as well as by the f-string. Try to
come close to this output, but do not worry if you cannot achieve it yet.

CSV Format / Real world data 17

Test your knowledge

1. What do the acronyms JSON and CSV stand for?
2. In what ways do these two formats differ from one another?

3. Which format allows programmers more flexibility in transferring data? Why?

4. What do the two functions dump and load of the json module do?
5. What do the two functions csv.DictReader and csv.DictWriter do?

6. What does the method writeheader do?
7. What do we need to do in order to sort a list of dictionaries? Why is that?

8. What are some other questions that you could answer with the Census data. Can
you write the Python code to answer them? Try it out and let us know what you
did. We might add that in our material for future semesters.

CSV Format / Real world data 18

