CSV Format/Real-world Data

ﬂ‘ln\ ’ﬂ'ﬁ‘w 'Wl’it

wW"n""*wfm’“?"M'M ol CS111 Computer Programmin
TsrirltBind'n R pu g 3

w ()
i Census 2020 i g
m"i' i o & i wﬁ\' 1 mei .w.'m,, Department of Computer Science
a‘i‘ m*i 'l"ﬂ"iw *wwﬁ*’ Wellesley College
R

Recap: File Formats so far

One way to provide input for our programs is through files that store data.
So far we have seen how to work with two file formats: TXT files and JSON files.

In both cases, we have to create first a fileObject that refers to a file that is open for either
reading or writing (e.g., TileObjR and fileObjW).

with open(filePath, 'r') as fileObjR:
do reading/loading operation

with open(filePath, 'w') as fileObjW:
do writing/dumping operation

Python synta —

Reading text fileObjR.read() Loading a JSON json.load(fileObjR)
from a file fileObjR.readline() object from a file

fileObjR.readlines()

Writing text fileObjW.write(aStr)
into a file

Dumping a JSON json.dump(obj,
objectinto a file fileObjW)

Operations for working Operations for working

with TXT files with JSON files

CSV Format / Real world data 2

Concepts in this slide:

The C SV FO rmat Introducing a new file

(CSV = Comma Separated Values) format for tabular data.

State,StatePop,Abbrev.,Capital,CapitalPop Partial screenshot of the us-states-
Alabama,4921532,AL,Montgomery, 198525 more.csv file, viewed with a text editor.
Alaska,731158,AK,Juneau,32113

Arizona,7421401,AZ,Phoenix,1680992

Arkansas,3030522,AR,Little Rock,197312
California,39368078,CA,Sacramento,513624
Colorado,5807719,C0,Denver,727211

A 8 ¢ P £ Partial screenshot of the us-states-

1 | State StatePop Abbrev. Capital CapitalPop more.csv file, viewed with the Google
2 Alabama 4921532 AL Montgomery 198525 Spreadsheet editor.

3 Alaska 731158 AK Juneau 32113

4 | Arizona 7421401 AZ Phoenix 1680992

5 | Arkansas 3030522 AR Little Rock 197312

6 California 39368078 CA Sacramento 513624

7 Colorado 5807719 CO Denver 727211

CSV files are one of the most common formats to share data, since they can be displayed
as a table in spreadsheet applications (Microsoft Excel, Google Spreadsheet, etc.).

CSV Format / Real world data

Reading tuples from CSV files For simple CSV files,

we can write our own

function to read it
def tuplesFromFile (filename) : unction to read 1ts

''"Read each line from opened file,
strip white space,

split at commas,

convert as tuple and

return a list of tuples.

content.

with open(filename, 'r') as inputFile:
theTuples = [tuple(line.strip() .split(',"'))

for line in inputFile]
return theTuples

To notice:
We are using a list comprehension to read the content of the

files into a list of tuples. This statement replaces this code:

theTuples = []
for line in inputFile:
theTuples.append(tuple(line.strip().split(',"')))

CSV Format / Real world data

What happens when our data has commas?

State
Alabama
Alaska
Arizona
Arkansas
California
Colorado

N oo gl bs W N =

A

Montgomery, AL
Juneau, AK
Phoenix, AZ
Little Rock, AR
Sacramento, CA
Denver, CO
Hartford, CT

N oo bW =

Partial screenshot of the capitals-only.csv
file, viewed with the Google Spreadsheet editor.

B €
StatePop Abbrev.
4921532 AL
731158 AK
7421401 AZ
3030522 AR
39368078 CA
5807719 CO
B
198525
32113
1680992
197312
513624
727211
122105

D E
Capital CapitalPop
Montgomery 198525
Juneau 32113
Phoenix 1680992
Little Rock 197312
Sacramento 513624
Denver 727211

Partial screenshot of the us-states-
more.csv file, viewed with the Google
Spreadsheet editor.

with open("capitals-only.csv", "w") as outF:
for item in capitals:

row =

f"{item[0]},{item[1] }\n"

outF.write(row)

capitals2 = tuplesFromFile("capitals—only.csv")

capitals

False

capitals?

Check the Notebook

It’s easy to create the file about capitals
from the state data, but when we read it
back using the function tuplesFromFile,
the result has tuples of three values, not
two, as we desire.

CSV Format / Real world data

5

The csv module

The csv module has four functions that create special objects to read/write CSV files.

CcsSv.reader
csv.writer

csv.DictReader

csv.DictWriter

Important Note

creates an object that reads the content of CSV file as a list of lists
creates an object that writes a list of lists into a CSV file

creates an object that reads the content of CSV file as a list
of dictionaries

creates an object that writes a list of dictionaries into a CSV
file

In CS111, we will only be covering

DictReader and DictWriter, since they

help us work with dictionaries.

CSV Format / Real world data

6

csv.DictReader [1]

Differently from reading/loading TXT and JSON files, reading a CSV file as a

dictionary is a two step process:
1. Create a DictReader object that is tied to the file object open for reading
2. Read and convert each line from the text file as a dict object

with open('countries.csv', 'r') as inputFile:
dctReader = csv.DictReader (inputFile)

rows = [row for row in dctReader] # read line by line
print (inputFile)
rint (dctReader
P l () The file object
print (rows) ‘///
<_io.TextIOWrapper name= ' countries.csv' mode='r' encoding='UTF-8'>

<csv.DictReader object at 0x7f84901a4c10> «—— The DictReader object

[{'country': "'Canada', 'capital': 'Ottawa'}, {'country': 'Mexico',

"capital': 'Mexico City'}, {'country': 'South Korea', 'capital': 'Seoul'},

{'country': 'Ukraine', 'capital': 'Kiev'}]

CSV Format / Real world data

7

csv.DictReader [2]

csv.DictReader creates an iterator object that reads lines into dictionaries only
when we “force” it to do the work through iteration.

dctReader = csv.DictReader (inputFile)
rows = [row for row in dctReader]

This 1s very similar to how the range object behaves:

>>> myRange = range(5, 10)
>>> myRange
range(5, 10)

>>> [item for item in myRangel
[5, 6, 7, 8, 9]

CSV Format / Real world data 8

csv.DictWriter

Writing a dictionary into a CSV file involves the following steps:

1. Create a DictWriter object tied to a file open for writing

2. Write the header of the file, which contains the names of the columns
3. Write all dictionaries as rows in the files

oscarMovies = [{'title': 'CODA', 'year': 2022},
{'title': 'Nomadland', 'year': 2021},
{'title': 'Parasite', 'year': 2020}]

columns = oscarMovies[0] .keys() # get the names of the keys

with open('oscarWinners.csv', 'w', newline='"') as outFile:
dctWriter = csv.DictWriter (outFile, fieldnames=columns)
dctWriter.writeheader () # no need for argument
dctWriter.writerows (oscarMovies)

Additional Parameters More examples

Notice that we have added a third parameter Check the notebook for examples to

to the open function: newline="" understand what writeheader,

This is needed to deal with the different way writerows, and one method not shown
that Windows machines deal with newlines. here, writerow, do.

U Y L uvlirliiiac /ooazcal WUle data

i ®
5L "“wﬁ

20 M'."
b

CSV Format / Real world data

10

Representation in Congress is based on

population. More people, more seats.

STATE

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
Florida
Georgia
Hawaii
Idaho
lllinois
Indiana
lowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan

APPORTIONMENT

POPULATION
(APRIL 1, 2020)

5,030,053
736,081
7,158,923
3,013,756
39,576,757
5,782,171
3,608,298
990,837
21,670,527
10,725,274
1,460,137
1,841,377
12,822,739
6,790,280
3,192,406
2,940,865
4,509,342
4,661,468
1,363,582
6,185,278
7,033,469
10,084,442

NUMBER OF

APPORTIONED
REPRESENTATIVES

BASED ON
2020 CENSUS?

= N (&)

—
WOONOOTOPRL,rPLPONNNPLPO_O010NPDO-N

—

CHANGE FROM

2010 CENSUS

APPORTIONMENT

00000000~ 000 ~~00~~~000O0O

CSV Format / Real world data

11

US States and Capitals: Doing more with our data

A B Cc D E
1 State StatePop Abbrev. Capital CapitalPop
2 Alabama 4921532 AL Montgomery 198525
3 Alaska 731158 AK Juneau 32113
4 Arizona 7421401 AZ Phoenix 1680992
5 Arkansas 3030522 AR Little Rock 197312
6 California 39368078 CA Sacramento 513624 Partial screenshot of the us-states-more.csv file,
7 Colorado 5807719 CO Denver 727211 viewed with the Google Spreadsheet editor.

Some questions to answer with our data:

- Which are the most populated US states? Rank the data in that order.
- Which are the least populated US states? Rank the data in that order.
- Which US state capitals are the most populated? Rank the data in that order.
- Which US state capitals are the least populated? Rank the data in that order.

- What percentage of each US state’s population lives in the state capital? Rank
the data by that percentage from the largest to the smallest.

CSV Format / Real world data

12

Can dictionaries be sorted? Explain the outputs!

In [31]:
"green",
"lemon":

In [32]:

Out[32]:
'"lemon',

In [33]:

Out[33]:
'"lemon',

In [34]:
Out[34]:

'yvellow']

In [35]:
Out[35]:

fruitColors = {"banana": "yellow", "kiwi'":
"grapes": "purple", "apple": "red",
"yellow", "pomegranate'": '"red"}

sorted (fruitColors)

['apple', 'banana', 'grapes', 'kiwi',
'pomegranate’']

sorted (fruitColors.keys())

['apple', 'banana', 'grapes',6 'kiwi',
'pomegranate’']

sorted (fruitColors.values())

['green', 'purple', 'red', 'red', 'yellow',

sorted (fruitColors.items ())
[('apple', 'red'), ('banana', 'yellow'),

('grapes', 'purple'), ('kiwi', 'green'), ('lemon',
'vellow'), ('pomegranate', 'red')]

CSV Format / Real world data

13

Sort a list of dictionaries

In [36]: peopleDctList = [{'name':'Mary Beth Johnson', 'age': 18},
{"name':'Ed Smith', 'age': 17},
{'"name':'Janet Doe', 'age': 25},

{'"name':'Bob Miller', 'age': 31}]
In [37]: sorted(peopleDctList)
Traceback (most recent call last):
File "<pyshell>", line 1, in <module>

TypeError: '<' not supported between instances of 'dict' and 'dict'

def byAge (personDct) :
return personDct['age']

In [38]: sorted(peopleDctlList, key=byAge, reverse=True)
Out[38]: [{'name': 'Bob Miller', 'age': 31},

{ 'name': 'Janet Doe', 'age': 25},
{ 'name': 'Mary Beth Johnson', 'age': 18},
{'name': 'Ed Smith', 'age': 17}]

CSV Format / Real world data 14

Questions 1 & 2: Sort by US state population

How to implement the solution with Python code:

1. Read the content of the CSV file us-states-more.csv using
csv.DictReader, which returns a list of dictionaties.

2. Create a helper function byStatePop, which, given a dictionary with state data (one row
from our file), returns the appropriate value. Remember that all values in the dictionary
are strings, because they come from the CSV file.

3. Apply the sorted function to the list of dictionaries of state data, using the key
parameter with the function byStatePop.

4. Look at the results, in which way are they sorted?
5. Include the function parameter reverse to change the order of sorting.

6. Use f-string formatting to print out top six results as shown below.

Top six most populated US states: Top six least populated US states:
CA — 39,368,078 wy -> 582,328
™X —> 29,360,759 VT —> 623,347
FL —> 21,733,312 AK —> 731,158
NY —> 19,336,776 ND —> 765,309
PA —> 12,783,254 SD —> 892,717
IL —> 12,587,530 DE —> 986,809

CSV Format / Real world data 15

Questions 3 &4: Sort by capital population

How to implement the solution with Python code:

Follow the steps from the previous slide, but create appropriate functions to use with the
parameter key for sorted. Try to come as close as possible to these outputs, but don’t worry
if you cannot. These outputs use some special f-string features for formatting.

Top six most populated US state capitals:

Phoenix (AZ) -> 1,680,992
Austin (TX) - 978,908
Columbus (OH) —> 898,553
Indianapolis (IN) -—> 876,384
Denver (CO) —> 727,211
Boston (MA) —> 692,600

Top six least populated US state capitals:

Montpelier (VT) - 7,855
Pierre (SD) —> 13,646
Augusta (ME) - 18,681
Frankfort (KY) —> 27,679
Juneau (AK) —> 32,113
Helena (MT) -> 32,315

CSV Format / Real world data

16

Questions 5: Sort by percentage

How to implement the solution with Python code:

This will be similar to the two previous slides, by you’ll have to create a helper function,
byPercentage, which can calculate the percentage of people living in the capital of the
state. This function will be used by the sorted function, as well as by the f-string. Try to
come close to this output, but do not worry if you cannot achieve it yet.

Top six US states with the largest population percentage living in the capital:

Hawaii 24.52% of population lives in the capital, Honolulu.
Arizona 22.65% of population lives in the capital, Phoenix.

Rhode Island 17.02% of population lives in the capital, Providence.
Oklahoma 16.46% of population lives in the capital, Oklahoma City.
Nebraska 14.92% of population lives in the capital, Lincoln.
Indiana 12.97% of population lives in the capital, Indianapolis.

CSV Format / Real world data 17

AR R A

>

Test your knowledge

What do the acronyms JSON and CSV stand for?

In what ways do these two formats differ from one another?

Which format allows programmers more flexibility in transferring data? Why?
What do the two functions dump and load of the json module do?

What do the two functions csv.DictReader and csv.DictWriter do?
What does the method writeheader do?

What do we need to do in order to sort a list of dictionaries? Why 1s that?

What are some other questions that you could answer with the Census data. Can
you write the Python code to answer them? Try it out and let us know what you
did. We might add that in our material for future semesters.

CSV Format / Real world data

18

