Accumulation Pattern
for Lists and Dictionaries

e < :
@ j@ DS/ CS111 Computer Programming
let \¢ VA

\%

honey r ‘D,
= - sausage | / gq /6 P '
é\ language a’h\\f'"/ W Department of Computer Science
€

= = above)moon =3 ke
o1 8
| rudg o jﬁ-—‘ [SMmooth [read X Wellesley College

-\ RS

Recap: Accumulation for different types

count = 0
for letter in phrase:
if isVowel(letter):
count += 1

Accumulator variable as an integer

phrase = "the sun is shining"
newPhrase = '’
for letter in phrase:
if isVowel(letter):
newPhrase += 'x'
elif letter == ' ':
newPhrase += ' '
else:
newPhrase += ' '
print(newPhrase)

Aamnmh&mvmﬁbkasauﬂmg

oddList = []
for num in numList:
if num % 2 == 1:
oddList.append(num)

Accumulator variable as a list

word = "abracadabra"
lettersDict = {}
for letter in word:
if letter not in lettersDict:
lettersDict[letter] =
else:

lettersDict[letter] += 1
print(lettersDict)

Accumulator variable as a dictionary

Accumulation Pattern

Accumulation with dict and list types [1]
names = ['Andy', 'Carolyn', 'Eni', 'Lyn', 'Peter', 'Sohie']

Goal: group names by {

_ 4: ['Andy'],
their lengths. 7: ['Carolyn'],
3: ['Eni', 'Lyn'],
5: ['Peter', 'Sohie']}
This s o denlsle names = ['Andy', 'Carolyn', 'Eni', 'Lyn', 'Peter', 'Sohie']
) nameLengthDct = {}
accumulation pattern: for name in names:
he dicti i nameLen = len(name)
the dictionary 18 if nameLen not in namelLengthDct:
accumulating name nameLengthDct [nameLen] = [name]
else:
lengths (as keys), and nameLengthDct [nameLen] .append (name)
for each key, we're print(nameLengthDct)

accunnﬂadngthe
names with a certain

length.

Accumulation Pattern 3

Accumulation with dict and list types [2]

names = ['Andy',

Goal: a vowel index
(like the book index)
that shows all names
with a certain vowel
(no duplicates). This
is hard!

This 1s one possible
solution, but
somewhat complex.
It uses nested loops
and nested
conditionals.

'Carolyn', 'Eni', 'Lyn', 'Peter', 'Sohie']

{' T .

1

'"Andy', 'Carolyn'],
'"Carolyn', 'Sohie'],
'"Peter', 'Sohie'],
'Eni', 'Sohie']}

|

H- D O Q©

-

2!

)

[
~

names = ['Andy', 'Carolyn', 'Eni', 'Lyn', 'Peter', 'Sohie'l
vowelIndexDct = {}

for name in names:
for letter in name.lower():
if isVowel(letter):
if letter not in vowelIndexDct:
vowelIndexDct[letter] = [namel
else:
if name not in vowelIndexDct[letter]:
vowelIndexDct[letter].append(name)

print(vowelIndexDct)

Accumulation Pattern 4

A simpler solution with dict comprehension

names = ['Andy', 'Carolyn', 'Eni', 'Lyn', 'Peter', 'Sohie']
Goal: 2 vowel index ('a': ['Andy', 'Carolyn’],

(like the book index) 'e': ['Eni', 'Peter', 'Sohie’],

that shows all names 'i': ['Eni', 'Sohie’],

with a certain vowel 'o': ['Carolyn', 'Sohie'],

(no duplicates). This ‘u’: [1}

is hard!

vowelIndexDct2 = {vowel: [] for vowel in 'aeiou'}

for vowel in vowelIndexDct2:
for name in names:
if vowel in name. lower():
if name not in vowelIndexDct2[vowel]:
vowelIndexDct2[vowel].append(name)

print(vowelIndexDct2)

Accumulation Pattern

Concepts in this slide:

Dictionary Comprehension P

is very similar to list
comprehension.

Very much like list comprehension: use {} 1instead of [] and create
pairs with the colon syntax, e.g., aKey: aValue.

Syntax: { aKey: aValue for aKey in sequence}

Example: Write a dictionary comprehension that pairs words with their

lengths.

In [1]: wordsLst = 'the autumn is dragging its feet'.split()

In [2] {word: len(word) for word in wordsLst}

Out[2]: {'autumn': 6, 'dragging': 8, 'feet': 4, 'is': 2,
'its': 3, 'the': 3}

Important

We can use dictionary comprehension in situations
when we want to start accumulation with a complex
data structure (as in the previous slide). Accumulation Pattern 6

Why should we care about nested data

structures?

<« 1weet

(7 #FreeThemAll
@stacysuh

Looking fwd to 2019 working w @mediaaction to
advance racial justice & #mediajustice in a digital age!
This looks like #NoDigitalPrisons, hold FB accountable
& ensure POC/ low-income communities can access
basic necessities like phone & web. Donate today!
classy.org/fundraiser/180...

==. Medialustice @ @mediajustice - Dec 30, 2018
The #Medialustice movement is directly powered by our amazing @mediaaction
members!

The year's almost over but you still have time to support our network before
2018 ends. bit.ly/wesignalchange #WeSignalChange

8 MEDIA JUSTICE WINS . 2018

100+ ORGANIZATIONS ¢ @ o

IN THE NETWORK «®s

OUR MEDIA JUSTICE NETWORK GREW TO OVER
100 ORGANIZATIONS NATIONWIDE, FOCUSED
ON A DIVERSITY OF ISSUES, WORKING
TOGETHER TO FIGHT FOR DIGITAL SANCTUARY

4WESIGNALCHANGE

BITLY/

2:33 PM - Dec 30, 2018 - Twitter for Android

3 Retweets 5 Likes

—

Same
content,
but in
different
format.

Real-world data are stored as nested data structures.
Most of the content on the web is transferred from a
computer to another in a format known as JSON
(Javascript Object Notation), which represents dicts
and lists nested in each other.

{'id': 1079460557160247297,

'source': 'Twitter for Android',

'text': 'Looking fwd to 2019 working w @mediaaction to advance racial
justice & #mediajustice in a digital age! This looks like #NoDigita
1Prisons, hold FB accountable & ensure POC/ low-income communities
can access basic necessities like phone & web. Donate today! http
s://t.co/9iU1jRSLmt https://t.co/d2kb2Y9EHI',

'public_metrics': {'retweet_count': 3,

'reply_count': 0,
'like_count': 5,
'quote_count': 0},
'entities': {'urls': [{'start': 268,
'end': 291,
'url': 'https://t.co/9iU1jRSLmt',
'expanded_url': 'https://www.classy.org/fundraiser/1809542"',
'display_url': 'classy.org/fundraiser/180..',
'status': 200,
'unwound_url': 'https://support.mediajustice.org/fundraiser/1809542
'H
{'start': 292,
'end': 315,
'url': 'https://t.co/d2kb2Y9EHI',
'expanded_url': 'https://twitter.com/mediajustice/status/1079436958
667919361,
'display_url': 'twitter.com/mediajustice/s..'}],
'mentions': [{'start': 30,
'end': 42,
'username': 'mediaaction',
'id': '14881478'}],
'hashtags': [{'start': 75, 'end': 88, 'tag': 'mediajustice'},
{'start': 123, 'end': 140, 'tag': 'NoDigitalPrisons'}],
'annotations': [{'start': 143,

'end': 144,
'probability': 0.66,
'type': 'Organization',

"normalized_text': 'FB'}1},
'author_id': 80507653,

The json module

Functions to read and write JSON data from / into files.

Jjson.load —load JSON data from a file open for reading
Jjson.dump —dump JSON data into a file open for writing

import json

Usage: : \

: - - with open("tweet.json", 'r') as inFile:
Json.load(f1leCby) tweetDct = json.load(inFile)
json.dump (dictObj, print(len(tweetDct))

f1leOb3) with open("tweet2.json", 'w') as outFile:

json.dump(tweetDct, outFile)

with open("tweet2.json", 'r') as inFile:
tweetDct2 = json.load(inFile)

tweetDct == tweetDct2

Accumulation Pattern

Challenge Problem: Manipulate JSONs

You are given a JSON file with tweets (their text and 1d):

[{'"id': 1072284009122586625, 'text': 'The case of Jacob Walter Anderson from
@Baylor is the perfect amalgamation between the #MeToo and #BlackLivesMatter
movements. #ThisIsWhyWeAreAngry'},

{'id': 1071990529448075264, 'text': 'Now, that you all have some background
information to this short story, please go read it at =« =« &
https://t.co/KRGkIbNJbY = = = #NoJusticeNoPeace #BlackLivesMatter
#MissionFree #DefendOurFreedom ©'}]

We want to answer the following question:

* Which are the most frequently mentioned hashtags?

We can answer this question via Python code that makes use of the
accumulation pattern with dictionaries.

Use the notebook to answer this question (in a guided way).

Accumulation Pattern

https://t.co/KRGkjbNJbY

How to use accumulation to solve a real-
word problem?

(more challenging material on accumulation)

Real-world problem: Language Detection

E’A This page isin Hungarian T would you like to translate it?

 S—

EA This page isin Japanese C Would you like to translate it?

S

3 Al This pageisin Albanian T would you like to translate it?

—

XAl This pageisin Slovak C Would you like to translate it?

—

Question:

How would you write a computer program that takes some text as input
and outputs the language in which the text was written? The Chrome
browser does that all the time (see images)!

Nope Translate

Nope Translate

Nope Translate

Nope Translate

Accumulation Pattern

11

Tirana éshté gjithmoné njé hap pérpara; po
mendojmé pér ditét e ftohta dhe me shi, kur
mund té kemi emergjenca civile. Kéto jané té
pashmangshme dhe pavarésisht histerisé, as
kryetari 1 Bashkisé, as Kryeministri apo
kushdo tjetér nuk mundet ta ndalojé shiun apo
té rregullojé infrastrukturén e keqndértuar
ndér vite, g€ jané kryesisht ndértime pa leje

b17é himenive ann né handcira té tiera niihlike

[ESEBARVAN—IEEKREHE
BH+E - KBXK=1HM25H. 38HHE
DBEETMHEDBEEHmEXESR
THEL-, It TO2EXSHE
(X#HT, BARKEREOHAER,
MEESHNTFALNETY., ARILT
ARDY AV EEBLTOF /18—
DERAKREEAT-. T+ EEEF

R A R N A A = — R Al — — i — R, NG S Sy | -2

How do we parse language?

A vilag legnagyobb fizetési halézatanak mikodési
bevétele az amerikai gazdasagi aktivitas kétharmadat
ado6 személyl fogyasztas folyamatos élénkségének
koszonhetben 14 szazalékkal 4,86 milliard dollarra
emelkedett. Az eredményben az is szerepet jatszott,
hogy a Visa Inc. a mualt év kbzepén megvasarolta a Visa
Europe Ltd. céget. A mtkodési koltségek alig valtoztak,
1,64 milliard dollart tettek ki.

A Visa kartyakkal lebonyolitott fizetések 0sszege 9,8
szazalékkal 1,93 ezer milliard dollarra emelkedett, ennek
43 szazaléka az Egyesiilt Allamokra jutott.

Globalny ekonomicky rast je urcite
slusny — rozhodne z pohl'adu poslednych
desiatich rokov. No zaroven je aj ubohy —
z pohl'adu poslednych tridsiatich rokov.
V podstate je iba polovicny tomu, ¢o svet
zazival na konci osemdesiatich rokov,
celé deviat'desiate roky a predkrizové
roky tohto storocia. Smutnou realitou je,
ze svetu nestaci takto nizky rast. Svet je
nastaveny na viac.

Accumulation Pattern 12

Creating language features from text

1. Looking at the character sets: Latin, - |f we |learn that the family
Cyrillic, Greek, CJK (Chinese, Japanese, is Latin, that doesn’t solve the
Korean), etc. can provide a first problem, because there are so many

categorization into language families. languages that use Latin characters.

2. Looking at one-letter, two-letter or three-
letter words and their frequency in a text. = These are known as functional

3. Character n-grams and their frequency. words.

4. Word n-grams and their frequency. —> Each language might have a unique
signature: a unique frequency
distribution of these n-grams.

What are n-grams*?

Given the word: “book”, the character n-grams are
sequences of characters with different size. Unigrams: b, o,
k. Bigrams: bo, oo, ok. Trigrams: boo, ook.

Word n-grams deal with sentences. “I like red cherries” will
have as bigrams: “I like”, “like red”, “red cherries™.
N-grams are a common model for representing language in
the field of Natural Language Processing (a subfield of

Artificial Intelligence). Accumulation Pattern 13

Comparing character bigrams in

different languages

EN
AT
ED
ND
TO

TI

TE

OR :
EA :

AR :

1.13
1.12
1.08
1.07
1.07
1.06
1.00
0.99
0.98
0.98

NG
AL
IT
AS
IS
HA
ET
SE
ou
OF

Top 30 bigrams for English (%).

TH 2.71
HE : 2.33
IN : 2.03
ER 1.78
AN 1.61
RE 1.41
ES : 1.32
ON : 1.32
ST : 1.25
NT : 1.17
DE 74 517
ES 2.31
EN 2.27
EL : 2.01
LA : 1.80
0S 1.79
ON 1.61
AS : 1.56
ER : 1.52
RA 1.47

AD

RE
AL
AN
NT
UE
CI
CO
SE

AR :

1.43
1.43
1.42
1.33
1.24
1.22
1.21
1.15
1.13
1.11

TA :

TE

DO
IO
AC
ST

RO
UN

OR :

NA :

Top 30 bigrams for Spanish (%).

0.89
0.88
0.88
0.87
0.86
0.83
0.76
0.73
0.72
0.71

1.09
1.00
0.98
0.98
0.98
0.96
0.95
0.92
0.85
0.84

To notice:

* The top 3 bigrams for English
cannot be found at all in the list of
Spanish bigrams.

e The two lists have 14 bigrams in
common out of 30 (less than half).

e The bigrams that are in common
have different frequency. E.g., EN is
2.27 in Spanish and 1.13 in English.

Note: These bigrams were calculated
from a large set of news stories.
Because the word “the” is the most
common word in English speech, that
explains why the two bigrams “th” and
“he” are at the top. If we use only
the vocabulary of English words, the
list will change. The most common
bigram becomes “in”, because of the
many words that start with “in” or

that end in “ing”.

Accumulation Pattern 14

How can we use CS111 to identify language?

Scenario 1

We are given a list of englishwords,
what features can we extract from it?

Question: How do we build a program
that identifies natural languages?

Answer: We create a “signature’ for
Wi & * The frequency distribution of word

each known language by processing lengths.

large amounts of text. This signature is The frequency distribution of character n-
composed of different features and grams.

their frequency distributions. Then, for * The frequency distribution of words

new text, we compare its signature to starting with a particular letter.

that of known languages and pick the A0S T ToE.

one that comes the closest.

Frequency of English words by letter

Question: What does this problem
have to do with CS 111?
Answer: While we cannot build the

entire program, we can create many of
the features that would be part of the I IIII II I
0 , S .. " I, ’ I ; I_ f

signature of a language. e

ord counts

6
5
3
2

letters

Accumulation Pattern 15

English word length distribution

Problem: Given the dictionary of all 12000
English words, what is the distribution of 10000
words by length? 8000

6000

Counts

Solution 1 (requires two separate loops)
1. Iterate over the list of words to find the

4000

length of each word and store it into a new 2000 I
_m

list. [Accumulation in a list via a
mapping operation.]

2. Iterate over the list of lengths and store it
into a dictionary to keep track of the
number of times we encounter each length.
[Accumulation via a dictionary.]

Solution 2 (requires one loop)

1. Iterate over the list of words to find the length
of each word and immediately store it into a
dictionary. [Accumulation via a dictionary.]

0

5

10 15 20

Word length

Visualization of English word
length distribution. It resembles a
bell curve (normal distribution)
that is found often in nature.

Accumulation Pattern

16

English word length distribution - Code

Solution 1 (separate accumulation in two steps)

Step 1
lengthsList = [len(word) for word in englishwords]
or
lengthsList = map(len, englishwords) # new function map
Step 2

lengthsDct = {}
for length in lengthsList:
lengthsDct[length] = lengthsDct.get(length, 0) + 1

Solution 2 (one single loop accumulating into the dictionary)

lengthsDct2 {}
for word in englishwords:
length = len (word)
lengthsDct2[length] = lengthsDct2.get(length, 0) + 1

Accumulation Pattern 17

An aside: Fun with statistics

Counts

12000

10000

8000

In Statistics, it is common to describe a
dataset (e.g, the list of the lengths of all
English words) in terms of descriptive

(the value that occurs the most), the

these statistics can be calculated with the

10 20 25

6000 statistics: the mean, the median, the mode
b
2000 I I variance, the standard deviation, etc. All
0 N I.-__ . . .

Word length operations we have been learning,

The mean 1s the sum of all list elements divided by the
length of the list. (sum =>accumulation to a number)
The median 1s the middle element of a sorted list.

The mode is the most frequent element (i.e., the max
value from the frequency dictionary.)

The variance 1s the sum of the squares of the difference
of each item to the mean.

The standard deviation 1s the square of the variance.

Try it out
Using the lengthsList and
lengthsDct from the

previous slide, you can practice
calculating these statistics with
Python code.

You should find that both the
median and the mode are 8.

Accumulation Pattern 18

Concepts in this slide:
The function zip can be
used with strings and

returns a list of tuples.

Building character n-grams

Unigrams: 'b', 'o', 's', 't', 'o', 'n'
word = 'boston'
list (word)
Bigrams: 'bo', 'os', 'st', 'to', 'on'
["".Jjoin(pair) for pair in zip(word, word[1l:])]

llﬂll
S T 0 n

Trigrams: 'bos', 'ost', 'sto', 'ton'

["".jJoin(trple) for trple in zip(word, word[l:],word[2:])]

Accumulation Pattern

Concepts in this slide:

The blgl‘ amnm fl‘e quency Two functions to build the
bigram frequency
distribution distribution.
def bigrams (word) :

def

"""Given a word return a list of its bigrams."""
return ["".Jjoin(pair) for pair in zip(word,
word[1l:])]

createBigramFrequency ()
"""Create and return the bigram frequency distribution of
all words in ‘englishwords’.

wiiw

bigramsDct = {} # accumulator dictionary

for word in englishwords:
bigramsList = bigrams (word) # create ngrams as a list

add new bigrams or update counts of existing ones
for ngram in bigramsList:
bigramsDct[ngram] = bigramsDct.get(ngram, 0) + 1

return bigramsDct _
Accumulation Pattern 20

Concepts in this slide:
How to avoid multiple

N-gram frequency distributions iterations by creating

helper functions?

There are 66230 words in unigramsDct {}

englishwords. We want to bigramsDct = {}
trigramsDct {}

avoid iterating over them too

many times to create the n-gram _ _
for word in englishwords:

create ngrams
ngramsl = unigrams (word)

distributions we need.
We can create three n-gram

distributions in one single loop. ngrams2 = bigrams (word)

Imagine we have three functions: ngrams3 = trigrams (word)

unigrams, bigrams,

trigrams that contain the code # store ngrams in freq dicts

in slide 19, respectively. storeNgrams (ngramsl, unigramsDct)

storeNgrams (ngrams2, bigramsDct)

Imagine a function
storeNgrams (ngrams3, trigramsDct)

storeNgrams that takes a list
of n-grams and a dictionary and Question

adds the n-grams to the Can you hypothesize why the function
dictionary with their frequency storeNgrams doesn’t return a value?

as the key. Accumulation Pattern 21

Mutating Dictionaries Concepts in this slide:

A dictionary can be

. . . mutated via aliasing.

via aliasing ;
def storeNgrams (ngramsList, ngramsDict):

"""Given a list of items and a dictionary,

update the counts of the dictionary keys.

for ngram in ngramsList:

ngramsDict[ngram] = ngramsDict.get(ngram, 0) + 1
Function Call Frames
storeNgrams (ngramsl, unigramsDct) unigramsDct 'b' 1
ngramsList ngramsDict
storeNgrams (ngrams2, bigramsDct) bigramsDct 'bo' | 1
ngramsList ngramsDict
storeNgrams (ngrams3, trigramsDct) trigramsDct "bos' | 1
ngramsList ngramsDict
Accumulation Pattern

22

Analyzing the Results Yol

Predict what will be the max lengths for the unigramsDct, bigramsDct,

and trigramsDct: , ,

Do you expect that all dictionaries will have that max length? Explain.
Predict the top 3 unigrams, top 3 bigrams, and top 3 unigrams.

How to write a function sortItemsInFregDict that given a frequency
dictionary will return the sorted list (in descending order) of its items, based
on the value of each (key/value) item?

Which will be more frequent (have the highest values): the top unigrams, the

top bigrams, or the top trigrams?

Accumulation Pattern 23

[] L] L] [] { ' a '
Accumulating in a dictionary
of dictionaries
Problem: How can we create a dictionary that has
two level of keys? In the first level, each key is a 'b':

unigram, in the second level the keys are bigrams that
start with the unigram. [See example on the right.]

Solution 1: Assume we already have bigramsDict:
}

from string import ascii lowercase as lowercase
'abcdefghijklmnopgrstuvwxyz'

19,
1665,

: 2387,

1685,

1431,

: 417,
: 25,
: 35,

create the dict with unigrams as keys and empty dict as wvalues

bigramsByFirstLetter = {char: {} for char in lowercase}

for bigram in bigramsDct:
unigram = bigram[O0]
assign the second level of keys

bigramsByFirstLetter [unigram] [bigram] = bigramsDct[bigram]

Accumulation Pattern 24

Accumulating in a dictionary
of dictionaries [2]

Solution 2: We don’t have biorams, we create them as we iterate over the list of words.
g 5

from string import ascii lowercase as lowercase
'abcdefghijklmnopgrstuvwxyz'

create the dict with unigrams as keys and empty dict as wvalues
bigramsByFirstLetter = {char: {} for char in lowercase}

for word in englishwords:

create list of bigrams from word

bigramsLst = bigrams (word)

iterate over bigrams

for bigram in bigramsLst:
unigram = bigram[O0]
access the nested bigram dict for easy reference
bigramsDct = bigramsByFirstLetter[unigram]
increase frequency counter
bigramsDct[bigram] = biagramsDct.get (bigram, 0) + 1

Accumulation Pattern 25

{'ed': ['abandoned',

Accumulating in a dictionary

'abased',
< 'abashed',
of lists. e
Problem: Group words from englishwords based S

on their ending: words ending with ‘ed’, ly’, ‘es’, etc. '1y': ['abjectly’,

'ably',
SahuﬂnlAngthhnx 'abnormally',
1. Create an empty dictionary 'abominably’,
2. Iterate over words and get the ending of each 2oally '
'es': ['abacuses',

wortd. 'abases',
3. Check to see if the key/value for ending is 'abashes',

already in the dictionary using the method get 'abates’,

with the default value an empty list. 2oolly
4. Append the word to the list associated with its }

ending,

wordsByEnding = {}

for word in englishwords:
ending = word[-2:]
wordsByEnding[ending] = wordsByEnding.get (ending, [])
wordsByEnding[ending] . append (word)

Accumulation Pattern 26

Summary

Lists and dictionaries are powerful data structures that are used routinely to perform
complex data analysis tasks such as transforming data from one form to another.

Accumulation 1s a very common pattern in problem solving: we accumulate frequencies
(counts) as we encounter new data; or we organize data as nested dictionaries of
dictionaries or dictionaries of lists.

When we need to accumulate into nested structures, first always draw a picture of what
the structure would look like, in order to visualize what needs to be created through code.

Dictionaries are mutable and they can be changed via aliasing (two different variables
pointing to the same dictionary object).

The nested structures would need double subscripting operations (e.g., see last statement
in slide 16-16). If this 1s conceptually difficult, you can store the inner structure into a
temporary variable and work with that instead. Because of aliasing, this temporary variable
will be directly mutating the entire dictionary. [See second from last statement in slide 19.]

Use a dictionary comprehension statement whenever you need to create a dictionary of
dictionaries or a dictionary of lists in the case when the keys of the outer dictionary are
known.

Accumulation Pattern

27

