
1 Probe
Add print statements. Use to:

• Check if a function is being called or not:

def f(x, y):
return x + 3*y

→ def f(x, y):
print("HELLO FROM f")
return x + 3*y

• Check the value of a variable:

y = 15 / x → print ("x:", x)
y = 15 / x

• Check what happens at a conditional:

if x > 5:
y = 10

else:
y = 3

→ if x > 5:
print("x > 5")
y = 10

else:
print("x <= 5")
y = 3

2 Trace
Use multiple probes to understand code. Use to:

• Figure out where a value comes from:

def f(a):
g(a * 3)

def g(b):
for i in range(b):

h(9-i)

def h(c):
print (10/c)

(error if c is 0 in function h)

→ def f(a):
print ("a:", a)
g(a * 3)

def g(b):
print ("b:", b)
for i in range(b):

print("i:", i)
h(9-i)

def h(c):
print ("c:", c)
print (10/c)

3 Unpack
Split up a complicated expression into multiple statements. Use this to:

• Isolate an error in a complex expression:

x = function (
(a + 3*b)/(c * d),
b / a

)

(ZeroDivisionError on line 1)

→ top = a + 3*b
bot = c * d
fst = top / bot
sec = b / a
x = function (fst , sec)

(ZeroDivisionError on line 4, so
a must be the problem)

4 Toggle
Turn a line of code into a comment. Use to:

• Disable (can later re-enable) optional code:

def f(a, b):
print ("R: ", a/b)
return a + b + a

↔ def f(a, b):
#print ("R: ", a/b)
return a + b + a

• Temporarily replace broken code with a dummy value:

x = (3*y + 4*z)/w → #x = (3*y + 4*z)/w
x = 9

5 Bisect
Comment out half of your code to find the half that works, and then half
of the broken part, etc., until you isolate an error. Use this to:

• Find missing brackets or commas:

pairs = [
[0, 1],
[10, 11,
[20, 21],
[30, 31],

]

(syntax error at end of file)

→ pairs = [
[0, 1],
[10, 11,

[20, 21],
[30, 31],

]

(works now, so error must be in
the commented zone)

Note: To fit examples on this page, short and meaningless variable names have been used. DO NOT do this in your own code.

