
CS111 Computer Programming

Department of Computer Science
Wellesley College

Animation

22-2

Run the file simpleAnimation.py. Not from Canopy, from the command line.

Today: Animation with objects

22-3

Review: Objects

o  An object is a data value that has state and behaviors.

o  Strings, lists, tuples, dictionaries, and even numbers are also objects in
Python.

o  As are circles, canvases, points, etc. in cs1graphics

o  Behaviors are defined by methods that can be invoked on an object. A
method is a named sequence of instructions for an object.

o  For example:
 sq = Square(size, Point(centerX, centerY))!

 sq.setFillColor(color)!
 sq.rotate(initialAngle)

!
!

o  A class is a description of the shared characteristics (state and
behaviors) of a set of objects.

o  A class is used like a mold for making objects.

o  An object made from a class is called an instance of the class.

o  Example of classes include:
 str list
 int dict
 Canvas Polygon

Today: how to use classes and objects to make our own animation

22-4

Review: Classes

Classes in Python

o  Convention:
o  We will start names of classes with an upper case letter, and

continue in lower case (except to indicate word boundaries).
o  class ThisIsALegitimateClassName:
o  class AndThis:
o  class Canvas:

o  This is just a convention. But you will confuse readers of
your code if you write unconventional names like:

o  class badName:
o  class classWithATERRIBLEname

21-1

Modules in Python

o  A module is a file containing python definitions.
o  https://docs.python.org/2/tutorial/modules.html

o  Convention: name your modules in lowercase.
o  Our Intention:

o  Modules will contain definitions of classes
o  Try to keep related classes together in one module

o  We’re not the only ones
o  cs1graphics.py had a lot of class definitions
o  Many classes: Canvas, Circle, etc.

22-6

Importing Modules

o  The old, lazy way:
o  from cs1graphics import *
o  Lets us refer to Canvas, Circle, Polygon, etc

o  The better way:
o  import cs1graphics
o  Now you must use full names of classes:
o  cs1graphics.Canvas, cs1graphics.Polygon, etc

o  The preferred “Pythonic” way:
o  import cs1graphics as cs1g # or some other short name

o  Now the full names of classes are shortened:
o  cs1g.Canvas, cs1g.Polygon, etc

22-7 22-8

Animation Parts

There are two main parts to our animation framework:
1.  Sprites are the actresses in an animation. We create a cast of

sprites to act in our play. Each sprite knows how to
perform its own part. In particular it knows how to update
its state for each time step of the animation.

2.  Animations are the plays in which the sprites act. An
animation has a canvas on which visual representations of
the sprites are displayed. At each time step of the
animation, each sprite is asked to update its state, which
often changes how it appears on the canvas. As each sprite
changes, we see a �movie� of the sprites� performances.

22-9

Just RotatingSquares
Run the file rotatingSquaresAnimation.py. Not from Canopy, from the command line.

22-10

Animation Class
from cs1graphics import *!
!
class Animation: !
!
 def __init__(self, width, height, color, title):!
 # Create canvas for showing the sprites!
 self.canvas = Canvas(width, height, color, title)!
 # Create empty list of sprites!
 self.sprites = []!
!
 def addSprite(self, sprite):!
 self.sprites.append(sprite) !
 sprite.addToCanvas(self.canvas) !
 # Sprite determines how to add itself to canvas. !
!
 def start(self):!
 while True: # animation is infinite loop. !
 # Stop it using Ctrl-C Ctrl-C. !
 for sprite in self.sprites:!
 sprite.step()

22-11

RotatingSquare Class

from cs1graphics import *!

class RotatingSquare:!
 '''Colored square that rotates.'''!
 !
 def __init__ (self, centerX, centerY, size, !
 color, initialAngle, deltaAngle):!
 sq = Square(size, Point(centerX, centerY))!
 sq.setFillColor(color)!
 sq.rotate(initialAngle)!
 self.square = sq!
 self.deltaAngle = deltaAngle!
 !
 def addToCanvas(self, canvas):!
 canvas.add(self.square)!
 !
 def step(self):!
 self.square.rotate(self.deltaAngle) !

22-12

RotatingSquare Animation

rotatingSquares = Animation(800, 600, 'skyblue', !
 'RotatingSquares')!
!
rotatingSquares.addSprite(\!
 RotatingSquare(300, 400, 300, 'orange', 45, 5))!
!
rotatingSquares.addSprite(\ !
 RotatingSquare(500, 150, 250, 'green', 30, -1)) !
!
rotatingSquares.start()!

22-13

Object-Based Diagram

canvas&

sprites&

0& 1&
List&

Anima1on&
Canvas&rota1ng&

Square&
Anima1on&

square&

Rota1ngSquare&

deltaAngle&

posi1on&

size&

Square&

angle&
5&

300&

45&

x&

Point&

y& 400&

300&

color& ‘orange’&

square&

deltaAngle&

posi1on&

size&

Square&

angle&
D1&

250&

30&

x&

Point&

y& 150&

500&

color& ‘green’&

Rota1ngSquare&

22-14

Sprite Inheritance: MovingRotatingSquare

class MovingRotatingSquare(RotatingSquare):!
 '''Colored square that rotates and !
 moves horizontally with speed deltaX'''!
!
 def __init__ (self, centerX, centerY, size, color, !
 initialAngle, deltaAngle, deltaX):!
 # Explicitly invoke superclass constructor!
 RotatingSquare.__init__(self, centerX, centerY, !
 size, color,!
 initialAngle, deltaAngle)!
 self.deltaX = deltaX !
!
 # addToCanvas method inherited!
!
 def step(self):!
 RotatingSquare.step(self) # Rotate the square!
 self.square.move(self.deltaX, 0) # Move the square!

22-15

 MovingRotatingSquare Animation

movingRotatingSquares = \!
 Animation(800, 600, 'skyblue', 'MovingRotatingSquares')!
 
!
movingRotatingSquares.addSprite(\!
 MovingRotatingSquare(300, 400, 300, 'orange', 45, 5, 3))!
!
movingRotatingSquares.addSprite(\!
 MovingRotatingSquare(500, 150, 250, 'green', 30, -1, -2)) !
 
movingRotatingSquares.start()!

In movingRotatingSquareAnimation.py  
 add a new sprite and run the app again.

22-16

Sprite Inheritance: BouncingRotatingSquare

class BouncingRotatingSquare(MovingRotatingSquare):!
 '''Colored square that rotates and moves horizontally!
 with speed deltaX, and bounces off vertical canvas edges'''!
!
 # __init__ method inherited!
!
 # Override inherited addCanvas method!
 def addToCanvas(self, canvas):!
 canvas.add(self.square)!
 self.maxX = canvas.getWidth()!
 
 def step(self):!
 MovingRotatingSquare.step(self) # Rotate & move square!
 pos = self.square.getReferencePoint()!
 centerX = pos.getX()!
 centerY = pos.getY()!
 if centerX < 0 or centerX > self.maxX: !
 self.square.moveTo(centerX, centerY)!
 self.deltaX = -self.deltaX # Change direction!

22-17

Try it out: BouncingRotatingSquare

movingRotatingSquares = \!
 Animation(800, 600, 'skyblue', 'MovingRotatingSquares')!
 
!
movingRotatingSquares.addSprite(\!
 MovingRotatingSquare(300, 400, 300, 'orange', 45, 5, 3))!
!
movingRotatingSquares.addSprite(\!
 MovingRotatingSquare(500, 150, 250, 'green', 30, -1, -2)) !
 
movingRotatingSquares.start()!

22-18

RotatingSquare that inherits from Square!
Version of RotatingSquare that inherits directly !
from Square (a Drawable)!
class RotatingSquare(Square):!
 '''Colored square that rotates.'''!
!
 def __init__ (self, centerX, centerY, size, color, !
 initialAngle, deltaAngle):!
 Square.__init__(self, size, Point(centerX, centerY))!
 self.setFillColor(color)!
 self.rotate(initialAngle) # rotate self directly!
 # self.square = sq # <== no need for this anymore!!
 self.deltaAngle = deltaAngle !
!
 def addToCanvas(self, canvas):!
 # canvas.add(self.square)!
 canvas.add(self) # RotatingSquare *is* a Drawable!
!
 def step(self):!
 # self.square.rotate(self.deltaAngle) !
 self.rotate(self.deltaAngle) # RotatingSquare *is* !
 # a drawable!
 
!

Rotating Shapes

o  Run pulsingCirclesAnimation.py!
o  Define and implement a new class PulsarFromCircle

that inherits from Circle. Base your implementation on
Pulsar.py.

o  Update pulsingCirclesAnimation.py to include
PulsarFromCircle objects.

 Getting Started 3-19 22-20

BouncingDroppers
An animation in which a sprite can create other sprites.
Try it out: bouncingDropperAnimation.py. Not from Canopy, from the command line.

22-21

BouncingDropper [1]

import randomclass
class BouncingDropper (BouncingImage):
 '''Horizontally moving image that bounces off vertical
 edges of canvas and drops a DroppingImage with a
 given probability.'''

 def __init__ (self, centerX, centerY, picfile, deltaX,
 animation, droppedImage, dropProbability,
 droppedImageSticks)
 BouncingImage.__init__(self, centerX, centerY,
 picfile, deltaX)
 self.animation = animation
 self.droppedImage = droppedImage
 self.dropProbability = dropProbability
 # should be between 0.0 and 1.0
 self.droppedImageSticks = droppedImageSticks

 # Inherit addToCanvas from BouncingImage

 # Implementation continued on the next slide

22-22

BouncingDropper [2]
 def step(self):
 BouncingImage.step(self) # Move the image
 if random.random() < self.dropProbability:
 # random.random() returns random number between
 # 0.0 and 1.0.

 # Add new FallingImage to animation, with random
 # falling speed between 5 and 15.
 pos = self.image.getReferencePoint()
 if self.droppedImageSticks:
 self.animation.addSprite(FallingImageSticks(\
 self.animation, pos.getX(),
 pos.getY() + self.image.getHeight()/2.0,
 self.droppedImage, random.randint(5,15)))
 else:
 self.animation.addSprite(FallingImageDisappears(\
 self.animation, pos.getX(),
 pos.getY() + self.image.getHeight()/2.0,
 self.droppedImage, random.randint(5,15)))

22-23

FallingImageSticks
class FallingImageSticks:
 '''Vertically falling image that sticks to bottom of canvas.'''
 def __init__ (self, animation, centerX, centerY, imageFile, deltaY):
 '''Assume deltaY is positive'''
 self.animation = animation
 img = Image(imageFile)
 img.moveTo(centerX, centerY)
 self.image = img
 self.deltaY = deltaY

 def addToCanvas(self, canvas):
 self.maxY = canvas.getHeight() - self.image.getHeight()/2.0
 canvas.add(self.image)

 def step(self):
 '''sprite falls and sticks to bottom of canvas''’
 pos = self.image.getReferencePoint()
 centerX = pos.getX()
 centerY = pos.getY() + self.deltaY
 if centerY > self.maxY:
 centerY = self.maxY
 self.image.moveTo(centerX, centerY) # Stick at bottom

22-24

Problem: Sprites never go away!

def removeSprite(self, sprite):
 self.sprites.remove(sprite) # Remove sprite from list
 sprite.removeFromCanvas(self.canvas)
 # Sprite determines how to remove itself from canvas

Animation gets slower and slower as more sprites are added.

Let’s add a method to Animation class for removing sprites:

22-25

FallingImageDisappears

class FallingImageDisappears(FallingImageSticks):
 '''Vertically falling image that disappears when it
 hits bottom of canvas.''’

 # Inherits __init__ from FallingImageSticks

 # Inherits addToCanvas from FallingImageSticks

 def removeFromCanvas(self, canvas):
 canvas.remove(self.image)

 def step(self):
 '''sprite falls and disappears'''
 FallingImageSticks.step(self)
 if self.image.getReferencePoint().getY() >= self.maxY:
 self.animation.removeSprite(self)

All classes and files for Animation

22-26

22-27

Benefits of Object-Oriented Programming

•  Modularity:
•  Common states and behaviors packaged up

•  Polymorphism:
•  Same method can do different things for different types of

objects (e.g: step)

•  Encapsulation:
•  Hide details of how we store the object's information (e.g.

different solutions for MutableString)

•  Inheritance:
•  Objects that are specific types of others share states and

behaviors (no repetition of code)

22-28

Python vs. Java

Does Python actually have encapsulation?

•  We can access the state variables of a class directly

(nothing is hidden)

•  Some languages like Java allow private variables and methods,
which can only be accessed within class

