Introduction to Recursion

recursion

Web Videos ~ Shopping ~ Books ~ More~ Search tool

Images

CS111 Computer Programming

About 1,890,000 results (0.2 seconds)

. Did you mean: recursion
Department of Computer Science y

s
WCHCSIC} College Recursion - Wikipedia, the free encyclopedia
en.vikipedia.org/wiki/Recursion ~ Wikipedia ~
Recursion is the process of repeating items in a seff-similar way. For instance, when
the surfaces of two mirrors are exactly parallel with each ather the nested

Recursion (computer science) Category:Recursion
Recursion in computer science is a Wikimedia Commons has media
method where the solution to a related to Recursion. The main

More results from wikipedia.org »

. What is Recursion?
Recursive Patterns
Recursion is an instance of the divide/conquer/glue problem
solving strategy in which one or more subproblems is a smaller
instance of the original problem.

A recursive function is a function that invokes itself.

Designing recursive functions requires:

R ~\ \<
:LQQ‘ g:% + Understanding the difference between defining a function
i . and calling a function
ey % £
RSN X c + Understanding that it’s OK for a function to call another
7 % A E function that hasn’t yet been defined (or is in the process of being defined).
74 Z‘ ; \§ + Thoughtfully decomposing a problem into subproblems
/- -
AN
F 77 77 F TR

13-3 13-4

Review: functions calling other functions

Which of the following work? Which don’t work? Why?

def print2(s):

print s
print s

def print4d(s):

print2 (s)
print2(s)

print4 ('foo’)

def print4(s):

print2(s)
print2(s)

def print2(s):

print s
print s

print4 ('foo')

def print4d(s):

print2(s)
print2(s)

print4 ('foo")

def print2(s):

print s
print s

countDown

Suppose we want to write a function that prints the integers from n
down to 1 (without using loops):

def countDown (n) :
''"'Prints integers from n down to 1'''

if n < 1:
pass # Do nothing

else:
print n
countDown (n-1)

In [3]: countDown (5)

R NWdOm

13-6

Structure of Recursion

All recursive functions have two parts:

+ A base case: a simple case where the result is so simple, it can just
be returned. In this case the function does not invoke itself, since
there is no need to decompose the problem into subproblems.

+ arecursive case: a case where the problem is decomposed into

subproblems and at least one of the subproblems is solved by
invoking the function being defined, i.e., the function is invoked in

its own body.

13-7

countDown: Base Case

The base case. When is the problem so simple that we can solve it
trivially and we needn't decompose it into subproblems.

def countDown (n) :
''"'"Prints integers from n down to 1''"'

if n< 1:
pass #Do nothing

13-8

countDown: Recursive Case

The recursive case. For all instances of the problem not covered by
the base case, we'll decompose the problem into subproblems, at
least one of which is a smaller instance of the countDown
problem and can be solved by invoking the countDown function.

def countDown (n) :
''"'"Prints integers from n down to 1'''

if n < 1:
pass # Do nothing

else:
print n
countDown (n-1)

13-9

tower

Suppose we want to write a function that prints a tower based on the
characters of the input string name starting with len(name)
characters down to the last character :

def tower (name) : yOM

''"'"Prints a tower based on the string name from furn
len (name) characters down to the last character

T
In [6]:
tower (‘Wellesley’)
Wellesley
ellesley
llesley
lesley
esley
sley
ley
ey
y

13-10

What does this function do? #OM

def mystery(n):
if n < 1:
pass
else:
mystery(n - 1)
print n

13-11

countDownUp

Suppose we want to write a function that prints the integers from n
down to 1 and then from 1 up to n:

def countDownUp (n):

''"'Prints integers from n down
to 1 and then from 1 up to n''"'

In [6]: countDownUp (4)

BWNEFEFRNDWD

13-12

sumUpTo

Suppose we want to write a function that returns the sum of all the
positive integer numbers up to n :

def sumUpTo (n):

'"'write a function that returns the sum of all
positive integer numbers up to n'''

In [6] :sumUpTo (6)
Out [6]:21

In [6] :sumUpTo (10)
Out [6]:55

factorial

Suppose we want to write a function that returns nl:
nl=n*(n-1)*(@0-2)*.*1

it's
def factorial(n): yOM
'"'"write a function that returns n!''' turn

In [6]:factorial(3)
Out [6]:6

In [7]:factorial(5)
Out [7]:120

13-13 13-14
Turtle Graphics
Python has a built-in module named turtle. See the Python Splrahng Turtles: A Recursion Examp le
turtle module API for details.
Use from turtle import * to use these commands: _EI
fd(dist) turtle moves forward by dist
bk (dist) turtle moves backward by dist
1t (angle) turtle turns left angle degrees
rt(angle) turtle turns right angle degrees spiral (200, 90) spiral (150,72) spiral (150, 80)
pu () (pen up) turtle raises pen in belly
pd() (pen down) turtle lower pen in belly
pensize (width) sets the thickness of turtle's pen to width
pencolor (color) sets the color of turtle's pen to color
shape (shp) sets the turtle's shape to s/ip
home () turtle returns to (0,0) (center of screen)
clear () delete turtle drawings; no change to turtle's state
reset () delete turtle drawings; reset turtle's state
setup (width, height) create a turtle window of given width and height
spiral(150,120) spiral(200,95)
13-15 13-16

spiral (sidelen,angle)

+ sideLen is the length of the current side
- angle is the amount the turtle turns left to draw the next side

def spiral(sidelLen, angle):

"""Keeps drawing lines, each line is 75% the
length of the previous line, and the

recursion stops when the length of the line is
less than 5"""

13-17

spiral-Base case

def spiral(sidelen, angle):

"""Keeps drawing lines, each line is 75% the
length of the previous line, and the

recursion stops when the length of the line is
less than 5"""

if sidelLen < 5:
pass

13-18

spiral-Recursive case

def spiral(sidelen, angle):

"""Keeps drawing lines, each line is 75% the
length of the previous line, and the

recursion stops when the length of the line is
less than 5"""

if sidelLen < 5:
pass

else:

13-19

Invariant Spiraling

A function is invariant relative to an object’s state if the state of the
object is the same before and after the function is invoked.

Draws a spiral. The state of the turtle (position,
color, heading, etc.) after drawing the spiral is the
same as before drawing the spiral.

def spiralBack(sidelLen, angle):

if sidelen < 5:
pass
else:
fd (sideLen)
1t (angle)
spiralBack (sideLen*0.75, angle)
rt (angle)
bk (sideLen)

Y
=]

. /\/ zigzag(l, 10)
zigzag
zigzag (4, 10) /\/\/\/\/

Draws the specified number of zigzags with the specified
length.
def zigzag(num, length):

if num <= 0:

pass it's
else: { #0(/(/}/
1t (45) turn /
fd (length) xercise 9: modify zigzag
rt(90) to make the turtle’s state
fd (2*length) invariant.
1t(90)
fd(length)
rt(45)

zigzag(num-1, length)
13-21

blocks and blockHelper J T T]

. . . locks (4,2
Suppose we want to write a recursive function that blocks (4,25)

draws a sequence of n blocks

Draws the specified number of blocks with the specified

length. The state of the turtle (position,

color, heading, etc.) after drawing the blocks is the

same as before drawing the blocks.

def blocks(num, length): it's
furn

We can use a helper function that draws a single block:

Draws a square using recursion
with the specified side length.

def blockHelper (numSides, length):

13-22

drawTarget: recursive function

def drawTarget (canvas,x,y,radius, thickness,colorl,color?):
'''On the specified canvas, draws a bullseye target with
the given radius, centered at (x,y) with alternating colors,
colorl and color2, where colorl is the outermost color;
thickness is the width of each "band" in the ring;
thickness is also the minimum radius of a drawn circle''

Hint: how can we decompose the
problem into two subproblems such that
one of the subproblems involves drawing
a target?

13-23

What about this pattern?

13-24

