
CS111 Computer Programming

Department of Computer Science
Wellesley College

Introduction to Recursion

9-2

Recursive Patterns

13-3 13-4

What is Recursion?

Recursion is an instance of the divide/conquer/glue problem
solving strategy in which one or more subproblems is a smaller
instance of the original problem.

A recursive function is a function that invokes itself.

Designing recursive functions requires:

•  Understanding the difference between defining a function
 and calling a function

•  Understanding that it’s OK for a function to call another
function that hasn’t yet been defined (or is in the process of being defined).

•  Thoughtfully decomposing a problem into subproblems

13-5

Review: functions calling other functions

def print4(s):
 print2(s)
 print2(s)

def print2(s):
 print s
 print s

print4('foo')

def print4(s):
 print2(s)
 print2(s)

print4('foo')

def print2(s):
 print s
 print s

def print2(s):
 print s
 print s

def print4(s):
 print2(s)
 print2(s)

print4('foo’)

Which of the following work? Which don’t work? Why?

countDown

Suppose we want to write a function that prints the integers from n
down to 1 (without using loops):

In [3]: countDown(5)
5
4
3
2
1

13-6

def countDown(n):
 '''Prints integers from n down to 1'''

if n < 1:
 pass # Do nothing

else:
 print n
 countDown(n-1)

Structure of Recursion

All recursive functions have two parts:

•  A base case: a simple case where the result is so simple, it can just

be returned. In this case the function does not invoke itself, since
there is no need to decompose the problem into subproblems.

•  a recursive case: a case where the problem is decomposed into
subproblems and at least one of the subproblems is solved by
invoking the function being defined, i.e., the function is invoked in
its own body.

13-7

countDown: Base Case

The base case. When is the problem so simple that we can solve it
trivially and we needn't decompose it into subproblems.

def countDown(n):
 '''Prints integers from n down to 1'''

13-8

if n < 1:
 pass #Do nothing

countDown: Recursive Case

The recursive case. For all instances of the problem not covered by
the base case, we'll decompose the problem into subproblems, at
least one of which is a smaller instance of the countDown
problem and can be solved by invoking the countDown function.

13-9

def countDown(n):
 '''Prints integers from n down to 1'''

if n < 1:
 pass # Do nothing

else:
 print n
 countDown(n-1)

tower

Suppose we want to write a function that prints a tower based on the
characters of the input string name starting with len(name)
characters down to the last character :

def tower(name):
'''Prints a tower based on the string name from
len(name) characters down to the last character
'''

In [6]:
tower(‘Wellesley’)
Wellesley
ellesley
llesley
lesley
esley
sley
ley
ey
y

13-10

What does this function do?

13-11

def mystery(n):
 if n < 1:
 pass
 else:
 mystery(n - 1)
 print n

countDownUp

Suppose we want to write a function that prints the integers from n
down to 1 and then from 1 up to n:

def countDownUp(n):
 '''Prints integers from n down
 to 1 and then from 1 up to n'''

In [6]: countDownUp(4)
4
3
2
1
1
2
3
4

13-12

sumUpTo

Suppose we want to write a function that returns the sum of all the
positive integer numbers up to n :

def sumUpTo(n):
'’’write a function that returns the sum of all
positive integer numbers up to n'''
 In [6]:sumUpTo(6)

Out [6]:21

In [6]:sumUpTo(10)
Out [6]:55

13-13

factorial

Suppose we want to write a function that returns n!:

def factorial(n):
'’’write a function that returns n!'''

In [6]:factorial(3)
Out [6]:6

In [7]:factorial(5)
Out [7]:120

13-14

n! = n * (n-1) * (n-2) * ...* 1

turtle moves forward by dist
turtle moves backward by dist
turtle turns left angle degrees
turtle turns right angle degrees
(pen up) turtle raises pen in belly
(pen down) turtle lower pen in belly
sets the thickness of turtle's pen to width
sets the color of turtle's pen to color
sets the turtle's shape to shp
turtle returns to (0,0) (center of screen)
delete turtle drawings; no change to turtle's state
delete turtle drawings; reset turtle's state
create a turtle window of given width and height

Turtle Graphics

Python has a built-in module named turtle. See the Python
turtle module API for details.

Use from turtle import * to use these commands:

fd(dist)
bk(dist)
lt(angle)
rt(angle)
pu()
pd()
pensize(width)
pencolor(color)
shape(shp)
home()
clear()
reset()
setup(width,height)

13-15

Spiraling Turtles: A Recursion Example

spiral(200,90) spiral(150,72) spiral(150,80)

spiral(200,95) spiral(150,120)
13-16

spiral(sideLen,angle)

•  sideLen is the length of the current side
•  angle is the amount the turtle turns left to draw the next side

13-17

def spiral(sideLen, angle):

"""Keeps drawing lines, each line is 75% the
length of the previous line, and the
recursion stops when the length of the line is
less than 5"""

spiral-Base case

13-18

def spiral(sideLen, angle):

"""Keeps drawing lines, each line is 75% the
length of the previous line, and the
recursion stops when the length of the line is
less than 5"""

if sideLen < 5:
 pass

spiral-Recursive case

13-19

def spiral(sideLen, angle):

"""Keeps drawing lines, each line is 75% the
length of the previous line, and the
recursion stops when the length of the line is
less than 5"""

if sideLen < 5:
 pass

else:

Invariant Spiraling

A function is invariant relative to an object’s state if the state of the
object is the same before and after the function is invoked.

Draws a spiral. The state of the turtle (position,
color, heading, etc.) after drawing the spiral is the
same as before drawing the spiral.
def spiralBack(sideLen, angle):

13-20

 if sideLen < 5:
 pass

 else:
 fd(sideLen)
 lt(angle)
 spiralBack(sideLen*0.75, angle)
 rt(angle)
 bk(sideLen)

zigzag

Draws the specified number of zigzags with the specified
length.
def zigzag(num, length):

 if num <= 0:
 pass

 else:
 lt(45)
 fd(length)
 rt(90)
 fd(2*length)
 lt(90)
 fd(length)
 rt(45)
 zigzag(num-1, length)

zigzag(1, 10)

zigzag(4, 10)

13-21

Exercise 9: modify zigzag
to make the turtle’s state
invariant.

blocks and blockHelper

Draws the specified number of blocks with the specified
length. The state of the turtle (position,
color, heading, etc.) after drawing the blocks is the
same as before drawing the blocks.
def blocks(num, length):

13-22

blocks(4,25) Suppose we want to write a recursive function that
draws a sequence of n blocks

Draws a square using recursion
with the specified side length.
def blockHelper(numSides, length):

We can use a helper function that draws a single block:

drawTarget: recursive function

def drawTarget(canvas,x,y,radius,thickness,color1,color2):
 '''On the specified canvas, draws a bullseye target with
 the given radius, centered at (x,y) with alternating colors,
 color1 and color2, where color1 is the outermost color;
 thickness is the width of each "band" in the ring;
 thickness is also the minimum radius of a drawn circle'''

13-23

Hint: how can we decompose the
problem into two subproblems such that
one of the subproblems involves drawing
a target?

What about this pattern?

13-24

