
 1

CS111 EXAM 1 Sample Solutions
October 03, 2014

YOUR NAME*: ____Solutions___

 *by writing your name above you are stating that you abided by the course policies while taking this exam

Please indicate your lecture by checking the appropriate box (so we can return your exam to you):

 Brian 9:50am Brian 11:10am Rhys 1:30pm

This exam has 6 problems. Some problems have several parts. The number of points for
each problem is shown in square brackets next to the problem or part. There are 100 total
points on the exam.

Write all your answers on the exam itself.

The exam is open book. You may refer to your notes, and other course materials except
that you may not use another person’s notes, or any materials from prior semesters of
CS111. You may not access any electronic device at any time.

Please keep in mind the following tips:

• First skim through the entire exam. Work first on the problems on which you feel

most confident. You do not need to do the problems in the order they are presented.

• Try to do something on every problem so that you can receive partial credit. For

programming problems, you can receive partial credit for explaining your strategy with
words and pictures.

• Allocate your time carefully. If you are taking too long on a problem, wrap it up and

move on.

The following table will be used in grading your exam:

Problem Score

Problem 1 [18 pts]

Problem 2 [12 pts]

Problem 3 [20 pts]

Problem 4 [18 pts]

Problem 5 [20 pts]

Problem 6 [12 pts]

Total [100 pts]

 2

Problem 1: Capture the Pattern [18 points]

I scream, you scream, we all scream for ice cream.
Using cs1graphics, the canvas on the right can
be produced with the code below.

1 from cs1graphics import *

2

3 paper = Canvas(500, 500,

4 'white', 'Ice Cream Cones')

5

6 # Draw first ice cream cone dessert

7 dessert1 = Layer()

8 cone1 = Polygon(Point(-100/2,0), Point(100/2,0), Point(0,2*100))

9 cone1.setFillColor('peachpuff2')

10 dessert1.add(cone1)

11 scoop1 = Circle(100/2)

12 scoop1.setFillColor('darkgray')

13 dessert1.add(scoop1)

14 cherry1 = Circle(10, Point(0,-100/2)) # Cherries have radius 10

15 cherry1.setFillColor('red') # Cherries are red

16 dessert1.add(cherry1) # Add cherry

17 dessert1.moveTo(110, 265)

18 paper.add(dessert1)

19

20 # Draw second ice cream cone dessert

21 dessert2 = Layer()

22 cone2 = Polygon(Point(-150/2,0), Point(150/2,0), Point(0,2*150))

23 cone2.setFillColor('peachpuff2')

24 dessert2.add(cone2)

25 scoop2 = Circle(150/2)

26 scoop2.setFillColor('black')

27 dessert2.add(scoop2)

28 dessert2.moveTo(260, 115)

29 paper.add(dessert2)

30

31 # Draw third ice cream cone dessert

32 dessert3 = Layer()

33 cone3 = Polygon(Point(-50/2,0), Point(50/2,0), Point(0,2*50))

34 cone3.setFillColor('peachpuff2')

35 dessert3.add(cone3)

36 scoop3 = Circle(50/2)

37 scoop3.setFillColor('white')

38 dessert3.add(scoop3)

39 cherry3 = Circle(10, Point(0,-50/2)) # Cherries have radius 10

40 cherry3.setFillColor('red') # Cherries are red

41 dessert3.add(cherry3) # Add cherry

42 dessert3.moveTo(405, 270)

43 paper.add(dessert3)

 3

Part (a) [12 points]

Capture the repeated pattern in the code above by creating a function, called
drawIceCreamCone, that can be used to draw ice cream cones on the Canvas, such as those
shown above. In part (b) on the next page, you will write three invocations of your
drawIceCreamCone function to draw the three ice cream cones. Here, in part (a), you must
define the drawIceCreamCone function. Your drawIceCreamCone function should take 6
parameters that provide the following information: the Canvas object to draw the cone on, the
x-coordinate on the Canvas where the center of the cone should be placed, the y-coordinate on
the Canvas where the center of the scoop (also the top of the Polygon cone) should be placed,
the width of the cone which is also half the height of the cone, the color of the scoop of ice
cream, and whether or not a cherry should be drawn on top of the scoop.

def drawIceCreamCone(theCanvas, x, y, size, color, hasCherry):

dessert = Layer()

cone = Polygon(Point(-size/2,0),

 Point(size/2,0),

 Point(0,2*size))

cone.setFillColor('peachpuff2')

dessert.add(cone)

scoop = Circle(size/2)

scoop.setFillColor(color)

dessert.add(scoop)

if hasCherry:

cherry = Circle(10, Point(0,-size/2))

cherry.setFillColor('red')

dessert.add(cherry)

dessert.moveTo(x, y)

theCanvas.add(dessert)

 4

Part (b) [6 points]

Write the three invocations of your drawIceCreamCone function that will replace lines 7-18,

lines 21-29, and lines 32-43 in the code above:

drawIceCreamCone_v2(paper, 110, 265, 100, 'darkgray', True)

drawIceCreamCone_v2(paper, 260, 115, 150, 'black', False)

drawIceCreamCone_v2(paper, 405, 270, 50, 'white', True)

 5

Problem 2: Lists [12 points]

Define a function named getUniqueListElements that takes two lists as parameters and

returns a new list consisting of all elements that are in one of the two input lists but not both.
For examples,

getUniqueListElements([1,2,3,4,5,6],[2,4,6,8]) returns [1,3,5,8]
getUniqueListElements(['hi','bye'],['bye','fly']) returns ['hi','fly']
getUniqueListElements([1,2,3,4],[]) returns [1,2,3,4]
getUniqueListElements(['cs111'],['cs111']) returns []

def getUniqueListElements(L1, L2):

newList = []

for elt in L1: # Add unique elements of L1 to newList

if elt not in L2:

newList.append(elt)

for elt in L2: # Add unique elements of L2 to newList

if elt not in L1:

newList.append(elt)

return newList

 6

Problem 3: Lists and Functions [20 points]

Consider the following program.

def maxLength(list):

max = 0

for word in list:

 if len(word) > max:

 max = len(word)

return max

def categorize(list):

newlist = []

for i in range(1,maxLength(list)+1):

 sublist = []

 for word in list:

 if i == len(word):

 sublist.append(word)

 newlist.append(sublist)

return newlist

pronouns =['I','me','you','we','us','he','she','them','they','it']

print(str(categorize(pronouns)))

Part (a) [10 points]

Show the output of running the above program.

[['I'],

 ['me', 'we', 'us', 'he', 'it'],

 ['you', 'she'],

 ['them', 'they']]

Part (b) [10 points]

Describe in English what the categorize function does.

Returns a list of lists where the ith element of the returned list is a list of all elements of length

(i+1) from the given input list.

 7

Problem 4: Conditionals [18 points]

Many people think of leap years as years that are divisible by 4. While it is true that all years not

divisible by 4 are not leap years, it is also true that not all years divisible by 4 are leap years. Years

that are divisible by 100 are NOT leap years unless they are also divisible by 400, in which case they

are leap years. For examples,

1999, 2001, 2002, 2003, 2005, 2006, 2007, 2009, 2010, 2011, 2013, 2014 are not leap years because

they are not divisible by 4

1700, 1800, 1900, 2100, 2200, 2300, 2500 are not leap years because they are divisible by 100 and

not divisible by 400

1600, 2000, 2400 are leap years because they are divisible by 400

1992, 1996, 2004, 2008, 2012, 2016, 2020 are leap years because they are divisible by 4 and not

divisible by 100

Part (a) [12 points]

Define a function named isLeapYear that takes one parameter representing an integer year and

returns True if the input year is a leap year and returns False otherwise.

def isLeapYear_v1(year): def isLeapYear_v2(year):

if year%4==0: if year%400==0:

if year%100==0: return True

if year%400==0: if year%100==0:

return True return False

else: if year%4==0:

return False return True

return True return False

return False

Part (b) [6 points]

Define a function named getLeapYearsInRange that takes two integer parameters and returns a

list of all leap years in the range between the first integer parameter, inclusive, and the second

integer parameter, exclusive. For example,

getLeapYearsInRange(1990,2020) returns [1992,1996,2000,2004,2008,2012,2016]

def leapYearsInRange(start, end):

leapYears = []

for year in range(start, end):

if isLeapYear(year):

leapYears.append(year)

return leapYears

 8

Problem 5: Strings [20 points]

Part (a) [7 points]

Write a function named insert that takes two string parameters, s1 and s2, and returns a new

string similar to s2 but with s1 inserted into its middle. If s2 has an odd length, then s1 is inserted

before the middle character in the returned string. For example,

insert('X','cat') returns 'cXat'

insert('X','oo') returns 'oXo'

insert('ok','tiger') returns 'tiokger'

insert('yuck','fart') returns 'fayuckrt'

insert('yummy','chocolate') returns 'chocyummyolate'

def insert(s,word):

length = len(word)

middle = length/2

return word[0:middle] + s + word[middle:]

 9

Part (b) [7 points]

Write a function named dropMiddle that takes a string parameter and returns a new string similar

to the input string but without the middle character(s). If the string parameter has an odd number of

characters, then the returned string does not contain the middle character. If the string parameter has

an even number of characters, then the returned string does not contain the two middle characters.

For example,

dropMiddle('tiger') returns 'tier'

dropMiddle('hand') returns 'hd'

dropMiddle('axe') returns 'ae'

dropMiddle('oh') returns ''

dropMiddle('I') returns ''

def dropMiddle(s):

length = len(s)

odd = ((length % 2)==1)

middle = length/2

if odd:

return s[0:middle] + s[middle+1:]

else:

return s[0:middle-1] + s[middle+1:]

Part (c) [6 points]

Show what is printed by the following four lines of code:

print(insert('cool',dropMiddle('python')))

 pycoolon

print(insert('hi',insert('bye',dropMiddle('ok'))))

 bhiye

print(insert(dropMiddle('ROAR'),'CS111'))

 CSRR111

print(dropMiddle(insert('Y',dropMiddle('popsicle'))))

 popcle

 10

Problem 6: Parameters [12 points]

Consider the following program.

1 def leapRound(lf1, lf2, lf3):

2 print(str(lf1))

3 print(str(lf2))

4 print(str(lf3))

5 leap(lf1, lf3)

6 leap(lf2, lf1)

7

8 def leap(lf1, lf3):

9 lf1[0] = 1 + lf3[0]

10

11 leapFrog1 = [3,1]

12 leapFrog2 = [1,1]

13 leapFrog3 = [2,1]

14 leapRound(leapFrog2, leapFrog3, leapFrog1)

15

16 print(str(leapFrog1))

17 print(str(leapFrog2))

18 print(str(leapFrog3))

Part (a) [6 points]

When the program above is executed, show what will be printed by lines 2, 3, and 4.

[1, 1]

[2, 1]

[3, 1]

Part (b) [6 points]

When the program above is executed, show what will be printed by lines 16, 17, and 18.

[3, 1]

[4, 1]

[5, 1]

