
CS111 FINAL JEOPARDY: THE HOME VERSION

The game that turns CS111 into CSfun11
May 5, 2011

Arrays

[1] This is the Java expression that denotes the number of elements in the array A.

[2] This is one advantage of representing a sequence of elements as an array rather than as a list.

[3] Suppose that B is an array of booleans. This is a sequence of statements that swaps the contents
of the first and last slots of B.

[4] This is a definition of a concatAll() method that concatenates all of the elements of an array
of strings into a single string. For example, suppose a is defined as follows:

String [] a = {"ab","cde","","f","ghij"};

Then concatAll(a) returns the string "abcdefghij".

[5] This is a definition of a class method satisfying the following contract:

public IntList intArrayToList (int [] A);

Returns an IntList containing all of the elements of A in the same order.



Objects

[1] A class declaration typically includes these entities, used to keep track of an object’s state.

[2] This keyword is used to signify a variable or method that is not tied to a specific instance of a
class.

[3] This is a list of all the different kinds of (1) methods and (2) variables that can be in a Java
class declaration.

[4] This is displayed in the Java Console window by an animation that contains a single sprite
create via new TextSprite(2,1), where the TextSprite class is defined as follows:

public class TextSprite extends Sprite {

private int x = 17;

public TextSprite (int a, int b) {x = 10*a + b;}

public void updateState() {x = x/2 - 1;}

public void drawState() {

if (x > 0) System.out.println(2*x);

}

}

[5] This is displayed in the Java Console window when the main method of the following Counter

class is executed:

public class Counter {

private static int c = 0;

private int i;

public Counter () {c = c + 1; i = 0;}

public void print () {

i = i + 1;

System.out.println("c = " + c + "; i = " + i);}

public static void main (String [] args) {

Counter a = new Counter(); a.print(); a.print();

Counter b = new Counter(); b.print(); a.print();

}

}



Iteration/Recursion

[1] This special type of recursion can also be written as a while loop.

[2] This is the equivalent while-loop version of the following code:

for (int i = 0; i < a.length; i++) {

s[i] = a[i] + b[i];

}

[3] This is the definition of a recursive method that satisfies the following contract:

public int sumLengths(StringList strs);

Returns the sum of the lengths of all the strings in the given StringList.

[4] This is the definition of a recursive method that satisfies the following contract:

public static StringList dropPlurals(StringList L);

Returns a StringList excluding all the words that end in the letter ’s’ in the given StringList
L.

[5] This is the definition of a method, written with a while loop, that satisfies the following
contract:

public int countLines(String fileName) throws IOException;

Returns the number of lines in the file whose name is given. Passes along any IOException

encountered when opening fileName.



Lists

[1] When defining a recursive list method, a good strategy is to assume you can successfully invoke
the method on this part of the list.

[2] This is one advantage of storing a sequence of elements in a list as opposed to an array.

[3] This list is the result of applying the following mystery()method to the list [2, 3, 9, 5, 6, 4]:

public IntList mystery (IntList L){

if(isEmpty(L)){

return empty();

} else if ((head(L) % 3) == 0) {

return mystery(tail(L));

} else {

return prepend(2*head(L),

mystery(tail(L)));

}

}

[4] This list is created by the invocation appendages(ns), where ns is the list [1,2,3], and
appendages is defined below:

public IntList appendages (IntList L) {

if(isEmpty(L)) return L;

else return append(L, appendages(tail(L)));

}

public IntList append (IntList L1, IntList L2) {

if(isEmpty(L1)) return L2;

else return prepend(head(L1), append(tail(L1), L2));

}

[5] This is the definition of a class method digitsToInt() that takes a list of single-character digit
strings and returns the integer that corresponds to concatenating the digits in in reverse order.

E.g., if digs is the list ["5","3","7","2"], then digitsToInt(digs) should return 2735.

You may define only one method; no auxiliary methods are allowed. Assume all the usual list
operations operate on StringLists.



Bugs That Bite

[1] This is a bug in the following array method.

public static int product (int [] a) {

int result = 1;

for (int i = 0; i <= a.length; i++) {

result = a[i] * result;

}

return result;

}

[2] This is a bug in the following turtle method;

public int halfs (int len) {

if (len > 0) {

fd(len);

int rest = halfs(len/2);

bd(len);

return rest + 1;

}

}

[3] This is a bug in the following method to determine if an integer list is sorted:

public static boolean isSorted (IntList L) {

if (isEmpty(L)) {

return true;

} else {

return (head(L) <= head(tail(L)))

&& isSorted(tail(L));

}

}



[4] These are three of the four bugs in the following class declaration:

public class Circle {

private Point center;

private int radius;

public void Circle (int x, int y, int radius) {

Point center = Point(x,y);

radius = radius; }

public void draw (Graphics g) {

g.drawOval(center.x - radius, center.y - radius,

2*radius, 2*radius);}

}

[5] These are two bugs in the following isMember method for determining if a given integer is in
an array of integers sorted from low to high:

// Assume a is sorted from low to high

public static boolean isMember (int n, int [] a) {

int i = a.length - 1;

while ((n < a[i]) && (i >= 0)) {

i--;

}

return (n == a[i]);

}



Potpourri

[1] Julius Caeser left out this crucial CS111 problem solving step in his famous military strategy.

[2] In the Java Execution Model, this special variable appears in frames for invocations of instance
methods and constructor methods but not class methods.

[3] Given the command line prompt:

> java MyProgram 10 hello.txt 18

This is the java expression that allows you to access 18 in the main() method of MyProgram.java.

[4] This is the picture drawn in an applet by the following statements. (Indicate relevant coordi-
nates and colors in your picture.)

Graphics g = getGraphics();

Point p1 = new Point(10, 20);

Point p2 = new Point(30, 60);

g.setColor(Color.red);

g.drawOval(p1.x, p1.y, p1.y, p1.y);

g.drawRect(p1.x, p1.y, p2.x, p2.y);

Polygon p = new Polygon();

p.addPoint(p1.x, p1.y);

p.addPoint(p2.x, p2.y);

p.addPoint(p1.x, p2.y);

g.setColor(Color.green);

g.fillPoly(p);

[5] This is an expression exp that makes the single statement

return exp;

equivalent to the following statement:

if (a) {

if (b) return true;

else if (c) return false

else return true;

} else {

return d;

}


