
Chapter 2

Simple Java Programming

Computational recipes are expressed by writing programs in a programming language. In
this chapter, we will explore how some very simple programs can be expressed in Java.
In the context of these programs, we will get our first glimpse of how Java programs are
structured and how such programs are executed. In subsequent chapters, we will study the
structure and execution of Java programs in much more detail.

Programming languages are usually taught in layers. The first programs are usually
written in a very restricted subset of the language that uses only a few concepts and features,
and new ones are introduced gradually. In Java, many of the concepts and features are so
tightly intertwined that it is difficult to carve out a small subset of the language to use
for introductory programs. A thorough understanding of even the simplest Java programs
requires understanding many concepts and features.

To address this problem, these notes will first present many concepts at an intuitive level
and treat certain features as magical incantations whose details need not be understood right
away. In later chapters, the missing details will eventually be explained. This approach
can be disconcerting, especially to “bottom-up” thinkers who are most comfortable under-
standing all fundamental concepts in detail before building on top of them. However, this
approach is in line with the “black-box abstraction” theme of this course. In programming,
as in any engineered system, it is important to be able to use features without understanding
the details of how they work.

2.1 A First Program

Our first program simply displays the message Welcome to Java! on the computer screen.
Here is how such a program can be written in Java:

public class Welcome {
public static void main (String [] args) {
System.out.println("Welcome to Java!");

}
}

The core of the program is the phrase

System.out.println("Welcome to Java!");

1



2 CHAPTER 2. SIMPLE JAVA PROGRAMMING

which causes the message to be displayed in a window on the computer. This is an example
of a statement, a phrase whose execution causes an action to happen. For now, you should
treat System.out.println(exp); as a magical incantation that prints out the value of
exp, where exp is a phrase (known as an expression) that denotes a value. In the next
chapter, we will study the taxonomy of statements and expressions and explain exactly how
to understand System.out.println("Welcome to Java!"); in terms of this taxonomy.

The pair of double quote marks in "Welcome to Java!" are used to signify the beginning
and end of a string – a value consisting of a sequence of characters – i.e., letters, numbers,
punctuation, spaces, etc. The string "Welcome to Java!" consists of sixteen characters
starting at W and ending at !. The double quote marks are not themselves characters in the
string, and they will not appear in the displayed message.

For now, you should treat the rest of the above program as a boilerplate that is necessary
for writing Java programs. That is, to write a simple Java program named P, you should
write

public class P {
public static void main (String [] args) {

. . .
}

}
where . . . is one or more statements specifying the computation you want to perform. Later
we will explain what this boilerplate means. The subphrase

public static void main (String [] args) {
. . .

}
is called a main method declaration and the portion filling in the . . . is called the body
of the main method. Sometimes we will just write a main method declaration with the
understanding that it needs to be embedded within a larger program in order to be executed.

As an example of a program with multiple statements in the body of the main method,
consider the following:

public static void main (String [] args) {
System.out.println("Welcome");
System.out.println("to");
System.out.println("Java!");

}

The multiple statements are executed one-by-one in order from top to bottom. It turns out
that System.out.println moves to the next line after printing the given string, so that
executing the new program displays the following the three-line message on the computer
console:

Welcome
to
Java!



2.2. A SENTENCE GENERATOR 3

There is a variant of System.out.println named System.out.print that displays the
given message but does not go to the next line. For example, executing the following three
statements

System.out.print("Welcome ");
System.out.print("to ");
System.out.println("Java!");

displays the message

Welcome to Java!

The space characters at the end of "Welcome " and "to " are important in this example;
without them, the resulting message would be WelcometoJava!, which is not what was
intended.

To actually execute one of the above programs on a computer, jyou need to take several
steps. First, you have to type the program into a text editor and save it as a text file. Then
you need to invoke a Java compiler on this file to translate the Java program into a simpler
language known as Java bytecodes. Finally, you need to execute the Java bytecodes via an
application that implements what is called a Java Virtual Machine (JVM). The details of
each of these steps depends on your local computing environment and are beyond the scope
of these notes.

If all goes well, the result of the above steps is that the message Welcome to Java! will
be displayed in some window on your computer screen. But what do we mean by “if all
goes well”? In practice, it is very easy to write programs that contain errors, and these can
cause one of the above steps to fail. For instance, Java is very picky about the structure of
a program, and if we neglect to include the keyword static in the above boilerplate, or we
misspell void as vod, or we forget the matching close squiggly brace for an open squiggly
brace, or we forget the semi-colon after the print statement, the Java compiler will complain
that the program is ill-formed. In this case, we need to edit the text file containing the
program to fix the error(s) before we resubmit the program to the compiler.

Sometimes the program will compile without error, but will encounter an error when
executed by the JVM. It’s hard to show an example of this in the context of the current
program, but we will see many such examples later.

Finally, the program might compile and execute fine, but still contain a logical error.
That is, the program does something, but not what we intended. For instance, if we misspell
Welcome as Welcom in the above program, a message is still printed on the screen, but not
the one we intended.

2.2 A Sentence Generator

A program that displays a fixed message is not very interesting. Here we consider some
programs that randomly generate sentences whose words are taken from a given vocabulary.

Consider simple English sentences like “a dog runs” or “the cat eats”. These are formed
by having an article (“a” or “the”) followed by a singular noun (“dog” or “cat”) and a
matching intransitive verb (“runs” or “eats”).



4 CHAPTER 2. SIMPLE JAVA PROGRAMMING

We can generate sentences of this form in Java by randomly choosing an article, a noun,
and a verb and displaying them in order. To randomly choose a word from a given vocabu-
lary, we shall assume the existence of an expression, StringChooser.chooseLine(filename).
This expression stands for one of the lines in the text file named by the string filename.
The line is chosen randomly and with equal probability from all possibilities. For example,
suppose that the file named verbs.txt consists of the following three lines:

runs
eats
sleeps

Then StringChooser.chooseLine("verbs.txt") stands for one of runs, eats, or sleeps,
each of which has a one in three chance of being chosen.

Here is a Java program that uses StringChooser.chooseLine to generate simple sen-
tences:

public class Sentence {
public static void main (String [] args) {
System.out.print(StringChooser.chooseLine("articles.txt"));
System.out.print(" "); // Separate words
System.out.print(StringChooser.chooseLine("nouns.txt"));
System.out.print(" "); // Separate words
System.out.println(StringChooser.chooseLine("verbs.txt"));

}
}

It is assumed that the files named articles.txt, nouns.txt, and verbs.txt contain ar-
ticles, singular nouns, and singular verbs, respectively, with one word on each line. The
program separates consecutive words with a space. The phrases // Separates words are
comments that are ignored by the computer during Java execution but help the human
reader understand the program. Comments begin with the character sequence // and run
until the end of the line.

For example, suppose that:

• articles.txt contains the two articles a and the;

• nouns.txt contains the four nouns dog, cat, bug, and mouse;

• verbs.txt contains the three verbs runs, eats, and sleeps.

Then there are 2 × 4 × 3 = 24 different sentences that can be generated by the program,
each of which is equally likely:

a dog runs a cat runs a bug runs a mouse runs
a dog eats a cat eats a bug eats a mouse eats
a dog sleeps a cat sleeps a bug sleeps a mouse sleeps

the dog runs the cat runs the bug runs the mouse runs
the dog eats the cat eats the bug eats the mouse eats
the dog sleeps the cat sleeps the bug sleeps the mouse sleeps



2.3. NUMERICAL CALCULATIONS 5

It is easy to modify the sentence generator to generate more sentences. One way to do this
without changing the program is to extend the vocabulary lists in each of the text files.
But the program can also be modified to generate more complex sentences with adjectives,
adverbs, transitive verbs, etc. – something that you are encouraged to do on your own.

Note that StringChooser.chooseLine is not limited to work on files where there is
only one word per line. It returns a randomly chosen line from any text file. For example, it
could be used in an “eight ball” program that answers yes/no questions via responses like:

Without a doubt.
It seems unlikely.
My sources say no.
It is certain.
Concentrate and ask again.

It could also be used to generate poems or stories from text files with phrases or sentences
on each line. Even though we don’t know yet how StringChooser.chooseLine can be
built from scratch, it is a clearly useful abstraction that we can readily employ for many
purposes without knowing exactly how it works.

2.3 Numerical Calculations

So far, our example programs have only manipulated strings. But Java can manipulate
many different kinds of values. Here we will see how to calculate with numbers in Java.

Integer operations in Java are similar to those in mathematics. For instance, 3 + 4
denotes 7 and 3 - 4 denotes -1. In Java, the operator * stands for multiplication, so
3 * 4 (denoting 12) is the Java way of writing what might be expressed in mathematics as
3 × 4, 3 · 4, or (3)(4).

Division in Java is written via / rather than a horizontal line. E.g., 10
2 (denoting 2)

is written as 10 / 2 in Java. An unusual aspect of division in Java is that the result of
dividing two integers is always an integer – in particular, the integer part of the division
(ignoring the remainder). Thus, 6 / 3, 7 / 3, and 8 / 3 all denote the integer 2 in Java.
The remainder of a division is returned by the % operator; 6 % 3 denotes 0, 7 % 3 denotes
1, and 7 % 3 denotes 2.

Java also has floating point numbers, which are numbers that conceptually have an
integer part before the decimal point and a fractional part after the decimal point. Examples
of floating point numbers are 3.14159 and -273.15. While 10 and 10.0 are indistinguishable
in mathematics, Java treats as having different types; the first is an integer (has Java type
int) while the second is a floating point number (has Java type double1). The difference
can be seen with numerical operators like +, -, *, and /. In Java, if both operands are
integers, the result is an integer, but if at least one operand is a floating point number, the
result is a floating point number. For example:

1The name of the double type comes from the phrase “double-precision floating point numbers”. Java
also supports single-precision floating point numbers with type float, but we shall not study these.



6 CHAPTER 2. SIMPLE JAVA PROGRAMMING

Expression Result Type of Result
2.718 + 3.141 5.859 double
2.718 + 3 5.718 double
2 + 3.141 5.141 double
2.0 + 3 5.0 double
2 + 3.0 5.0 double
2 + 3 5 int

9.0 / 4.0 2.25 double
9.0 / 4 2.25 double
9 / 4.0 2.25 double
9 / 4 2 int

Another difference between Java numbers and mathematics is that operations involving
floating point numbers are only an approximation of the actual mathematical result. For
example, in math, 7.0/3.0 = 21

3 = 2.333 . . ., where the final representation is a 2 followed
by a decimal point followed by an infinite sequence of 3s. In Java, however, the result of
7.0/3.0 is 2.3333333333333335, in which there are only a finite number of digits after the
decimal point. The details of how floating point numbers are approximated in Java are im-
portant to anyone who cares about the meaning of the result of floating point computation,
but such details are beyond the scope of this book.

The interpretation of sequences of numerical operators in Java follows the conventions of
those used in mathematics. For example, the expression 1 - 4 + 5 * 6 + 7 / 3 is inter-
preted as if it were written ((1 - 4) + (5 * 6)) + (7 / 3), where explicit parenthesis
have been used to indicate the order in which operations are done. The details of how such
operator sequences are interpreted are explained in the next chapter.

We can display the result of any numerical calculation in Java using System.out.println,
which displays numbers as well as strings. For example, here is a program performing some
of the sample calculations from above:

public class NumericalExamples {
public static void main (String [] args) {
System.out.println(2 + 3.0);
System.out.println(2 + 3);
System.out.println(9.0 / 4);
System.out.println(9 / 4);

}
}

The result displayed by executing this program is:

5.0
5
2.25
2

Note that System.out.println(2 + 3), which displays the result 5, is very different
than System.out.println("2 + 3"), which displays 2 + 3. In the first case, the argument
of System.out.println is the integer that results from adding 2 and 3, while in the second



2.4. STRING CONCATENATION 7

case the argument is a string of five characters: the digit 2, a space, the symbol +, a space,
and the digit 3.

It is hard to read the results displayed by the above program because it is necessary
to mentally match each of the four results with the associate expression. To make the
matching more obvious, we can print the expression before each result:

public class NumericalExamples {
public static void main (String [] args) {
System.out.print("2 + 3.0 = ");
System.out.println(2 + 3.0);
System.out.print("2 + 3 = ");
System.out.println(2 + 3);
System.out.print("9.0 / 4 = ");
System.out.println(9.0 / 4);
System.out.print("9 / 4 = ");
System.out.println(9 / 4);

}
}

The result displayed by executing the modified program is:

2 + 3.0 = 5.0
2 + 3 = 5
9.0 / 4 = 2.25
9 / 4 = 2

2.4 String Concatenation

Java’s + operator is not only used to add numbers. It is also used to concatenate two
strings together. For example, the expression "Java" + "line" denotes the 8-character
string "Javaline". This string could also be expressed in any one of the following ways as
well:

"Ja" + "valine"
"Jav" + "ali" + "ne"
"J" + "a" + "v" + "a" + "l" + "i" + "n" + "e"

Using + for string concatenation can simplify programs by reducing the number of calls
to System.out.print and System.out.println. For example, the sentence generating
program from above can be rewritten so that the main method has a body with a single
statement:



8 CHAPTER 2. SIMPLE JAVA PROGRAMMING

public class Sentence {
public static void main (String [] args) {
System.out.println(StringChooser.chooseLine("articles.txt")

+ " " // Separate words
+ StringChooser.chooseLine("nouns.txt"));
+ " " // Separate words
+ StringChooser.chooseLine("verbs.txt"));

}
}

An operator like + that has different meanings in different contexts (e.g., add two integers
vs. add two floating point numbers vs. concatenate two strings) is said to be overloaded.
In Java, the meaning of e1 + e2 is determined by the types of the operands e1 and e2:

• If e1 and e2 are both integers, then e1 + e2 stands for an integer addition.

• If one of e1 or e2 is a floating point number and the other is a floating point number
or integer, then e1 + e2 stands for a floating point number addition. The integer
operand (if there is one) is converted to a floating point number before the addition
is performed. Thus, Java treats 2.0 + 3 as if it were 2.0 + 3.0.

• If at least one of e1 or e2 is a string, then e1 + e2 stands for a string concatenation.
The non-string operand (if there is one) is converted to a string before the concatena-
tion is performed. For example, 17 would be converted to "17" and -273.15 would
be converted to "-273.15". So "CS" + 111 is treated as "CS" + "111", which de-
notes the string "CS111", and 3.141 + "..." is treated as "3.141" + "...", which
denotes the string "3.141...".

Here are a some more examples illustrating the overloading of +:

Expression is treated as whose value is
42 + 3.141 42.0 + 3.141 45.141

"42" + 3.141 "42" + "3.141" "423.141"
42 + "3.141" "42" + "3.141" "23.141"
63 + -273.15 63.0 + -273.15 -210.15

"63" + -273.15 "63" + "-273.15" "63-273.15"
63 + "-273.15" "63" + "-273.15" "63-273.15"

String concatenation with implicit coercions can be used to shorten the numerical ex-
ample program from above:

public class NumericalExamples {
public static void main (String [] args) {
System.out.print("2 + 3.0 = " + (2 + 3.0));
System.out.print("2 + 3 = " + (2 + 3));
System.out.print("9.0 / 4 = " + (9.0 / 4));
System.out.print("9 / 4 = " + (9 / 4);

}
}



2.5. NAMING VALUES VIA VARIABLES 9

In this case, the parenthesis around numerical expressions like (2 + 3.0) are required, not
optional. If we instead wrote "2 + 3.0 = " + 2 + 3.0, this would be parenthesized by
Java as ("2 + 3.0 = " + 2) + 3.0, and by the coercion rules from above this would be
equivalent to ("2 + 3.0 = " + "2") + "3.0". So the displayed result would be

2 + 3.0 = 23.0

which is not at all what was intended!

2.5 Naming Values Via Variables

Suppose that we want to calculuate the sum of the series of integers 1, 2, 3, . . . , n, where n
is a positive integer. Observe that the first and last integers in this series sum to n + 1,
that the second and second-to-last integers sum to n + 1, that the third and third-to-last
integers sum to n + 1, etc. Since there are n/2 pairs of integers in the series, and each
pair sums to n + 1, a formula for the sum of the series is n

2 · (n + 1). For example, the sum
of the integers 1 through 9 is 9

2 · (9 + 1) = 9
2 · 10 = 45. Note that even though the formula

contains a division by 2, it always returns an integer result because one of n and n + 1 is
even, and therefore evenly divisible by 2.

In the case of n = 9, we can calculate and display the series sum via the statement:

System.out.println((9 * (9 + 1)) / 2);

Because of the meaning of integer division, we must be sure not to write (9 / 2) * (9 + 1),
since this would calculate 4 · 10 = 40, which is not what was intended. Encoding numerical
formulae into Java requires more than mere transcription!

In this simple formula, it is not difficult to plug in a particular number for n, but it
would be tedious to do so in more complex formulae that mention many mathematical
variables and/or reference variables many times. This situation can be improved by using
Java variables, which allow programmers to name values and refer to them later by name.
Here is a series summation program that uses a Java variable n:

public class SeriesSum {
public static void main (String [] args) {
int n = 9;
System.out.println((n * (n + 1)) / 2);

}
}

The statement int n = 9; is a local variable declaration statement that introduces a local
variable named n. This can be envisioned as a box named n that holds a value. The int
part of the declaration says that the box must hold an integer value, and the = 9 part of the
declaration indicates that the initial value stored in the box is the integer 9. Later mentions
to the name n within the main method stand for the value in the variable box named n –
in this case, the integer 9.

The general form of a local variable declaration statement is

type name = exp



10 CHAPTER 2. SIMPLE JAVA PROGRAMMING

where name is the name of the variable box, type indicates the type of value that may be
stored in the variable box, and exp is an expression whose value will be stored into the
variable box.

The fact that the initial value of a variable may be the result of evaluating an expression
is important for avoiding repeating calculations in a program. For example, suppose we want
to calculate a2+b2

a2−b2
, where a is 10.27 and b is 8.56. One way to express this in Java is to

write:

public static void main (String [] args) {
double a = 10.27;
double b = 8.56;
System.out.println((a*a + b*b)/(a*a - b*b));

}
But this program calculates a*a twice and b*b twice. These repeated calculations could be
avoided by introducing additional variables:

public static void main (String [] args) {
double a = 10.27;
double b = 8.56;
double a_squared = a*a;
double b_squared = b*b;
System.out.println((a_squared + b_squared)/(a_squared - b_squared));

}
In the modified program, the result of calculating a*a is stored in a variable named
a_squared, and the result of calculating b*b is stored in a variable named b_squared.
Each of these calculated values is used twice in the remaining computation.

It is even possible to name the result of every expression in a Java program. For instance,
yet another version of the above program is:

public static void main (String [] args) {
double a = 10.27;
double b = 8.56;
double a_squared = a*a;
double b_squared = b*b;
double sum = a_squared + b_squared
double diff = a_squared - b_squared
double quot = sum/diff
System.out.println(quot);

}
This is going a bit overboard with variables! Variables are most useful for (1) naming values
that are used several times in a program (such as a, b, a_squared, and b_squared) or (2)
naming values that are constants in a particular program, but which might change when
the program is edited (such as a and b)2. Expressions whose values are calculated at most

2Another essential use for variables is to serve as a placeholder for values that can change over time. We
will stress this time-varying nature of variables in later chapters. In the meantime, we will use variables to
denote a box whose value does not change after it is initialized.



2.5. NAMING VALUES VIA VARIABLES 11

once and are unlikely to be edited during program development do not need to be named
via variables. Indeed, the expression itself already serves as a kind of “structured name”
for the value it denotes. Even when the value of an expression is used only once, though,
it is sometimes helpful to introduce variables because the variable helps to decompose a
complex expression into manageable parts and/or the name serves as a comment that helps
the programmer to understand the meaning of the expression.

With the notion of variables in hand, we can generalize our series summation program.
An arithmetic series is a series of n integers i1, i2, . . . in where each element is greater
than the previous element by the same value d. For instance, here are some examples of
arithemetic series:

Series n i1 in d

7, 8, 9, 10, 11, 12 7 6 12 1
2, 4, 6, 8 4 2 8 2
6, 11, 16, 21, 26, 31, 36, 41 8 6 41 5

As before, the sum of such a series is the number of pairs of elements multiplied by the sum
of the first and last elements: n

2 · (i1 + in).
Suppose that we are not given n, but are given the first and last elements of the series

and the difference d between consecutive elements. Then we can calculate n as in−i1
d +1. For

instance, for series with first element 6, last element 41 and difference 5, n = 41−6
5 + 1 = 8.

The +1 in the formula might seem wrong at first, but it is necessary to count both ends of
the series. Omitting the +1 would lead to a fence post error. This term comes from the fact
that n + 1 (and not n) vertical fence posts are required to construct a fence whose length is
n horizontal beams. Such off-by-one errors are extremely common in numerical programs
You should always think carefully about your formulae to ensure that they calculate what
they expect. An important technique is to plug in particular values for the variables and
check if the resulting value is correct.

Here is a Java program for calculating the sum of the more general form of an arithmetic
series:

public class ArithmeticSeriesSum {
public static void main (String [] args) {
int first = 6;
int last = 41;
int d = 5;
int n = ((last - first) / d) + 1;
int sum = (n * (first + last))/2;
System.out.println(sum);

}
}

The variables first, last, and d are effectively the “inputs” to the program, and in prac-
tice will be changed before every execution of the program. Here these inputs have been
instantiated to 6, 41 and 5, respectively. The variable n names the result of the formula
for calculating the number of elements in the series, and the variable sum names the result
of calculating the summation formula. Although neither n nor sum is used more than once,
naming them via variables clarifies the structure of the program.

There are still several ways in which the general summation program can be improved.



12 CHAPTER 2. SIMPLE JAVA PROGRAMMING

• There should be a more convenient interface for specifying the inputs to the program.
It is tedious and error-prone to edit and recompile the program every time you want
a new series summation. Suppose that the expression IO.readInt(prompt) reports
an integer typed in by the user of the program after the user has been prompted with
the string prompt. Then the program can be improved by writing:

public class ArithmeticSeriesSum {
public static void main (String [] args) {
int first = IO.readInt("Enter the first element of the series:");
int last = IO.readInt("Enter the last element of the series:");
int d = IO.readInt("Enter the difference between elements:");
int n = ((last - first) / d) + 1;
int sum = (n * (first + last))/2;
System.out.println(sum);

}
}

An even better interface to the program might be to develop a window with labeled
fill-in-the-blank slots for the program inputs, an area where the resulting summation
is displayed, and a calculation button that calculates the results for the currently
specified inputs.

• A nice user interface makes it easier for a person to use the summation program, but
does not make it easier for other programs to use the summation program. It is not
difficult to imagine a mathematical application that needs to calculate many series
summations. It should be possible to encapsulate the knowledge of such calculations
in a black-box computational entity that can be used arbitrarily often. In Java, the
right entity to use for this purpose is called a method. We shall see how to define
methods other than the main method in a few chapters.

• The program does not handle certain error or boundary cases. For instance, suppose
that last cannot be reached from first by adding a multiple of d. As a concrete
example, suppose that first is 5, last is 9, and d is 3. Then the series 5, 8, 11, . . .
does not contain 9!. It is important to decide how this situation should be handled.
One approach is to indicate that there is an error, perhaps halting the program as
well. Another approach is to use a different value in place of last – perhaps the
largest element of the series less than or equal to last (in this case, 8) or the smallest
element of the series greater than or equal to last (in this case, 11).

As structured, the program does not allow for an empty series – i.e., a series that
contains zero elements. Such a series is mathematically sensible and has a sum of 0,
but there is no obvious way to specify it in with the current interface. What would
first, last, and d be for an empty series?

Interestingly, the program does already handle the case where last is smaller than
first. Consider the series 4, 1,−2,−5,−8 where first is 4, last is -8 and d is -3.
Then n is calculated to be ((-8 - 4)/-3) + 1 = (-12/-3) + 1 = 4 + 1 = 5, and
the summation is indeed (5 * (4 + -8))/2 = (5 * -4)/2 = -20/2 = -10. This is
an example of serendipity, where the program correctly handles a case that we did



2.5. NAMING VALUES VIA VARIABLES 13

not consider explicilty. But serendipity is rare in programs, so you should carefully
consider all boundary cases in practice.


