

 1

CS111 EXAM 1
March 05, 2015

YOUR NAME*: EXAM 1 SOLUTIONS

 *by writing your name above you are stating that you abided by the course policies while taking this exam

Please indicate your lecture by checking the appropriate box (so we can return your exam to you):

 !Lyn 9:50am ! Rhys 11:10am ! Rhys 1:30pm

This exam has 5 problems. Some problems have several parts. The number of points for
each problem is shown in square brackets next to the problem or part. There are 100
total points on the exam.

Write all your answers on the exam itself.

The exam is open book. You may refer to your notes, and other course materials except
that you may not use another person’s notes, or any materials from prior
semesters of CS111. You may not access any electronic device at any time.

Please keep in mind the following tips:

• First skim through the entire exam. Work first on the problems on which you feel

most confident. You do not need to do the problems in the order they are presented.

• Try to do something on every problem so that you can receive partial credit. For

programming problems, you can receive partial credit for explaining your strategy
with words and pictures.

• Allocate your time carefully. If you are taking too long on a problem, wrap it up and

move on.

The following table will be used in grading your exam:

Problem Score

Problem 1 [21 pts]

Problem 2 [12 pts]

Problem 3 [16 pts]

Problem 4 [12 pts]

Problem 5 [39 pts]

Total [100 pts]

 2

Problem 1: Capture the Pattern [21 points]

I must govern the clock, not be governed by it – Golda Meir.

Using cs1graphics, the canvas above can be produced with the code below:

from cs1graphics import *

wall = Canvas(500,350,'white','Clocks')

Draw first clock, red, diameter 125, time 5pm, at (150,75):
clock1 = Layer()
clockface1 = Circle(125/2.0) # 125 is clockface diameter
clockface1.setFillColor('red')
clock1.add(clockface1)
minutehand1 = Path(Point(0,0), Point(0,-125*.48))
hourhand1 = Path(Point(0,0), Point(0,-125*.35))
hourhand1.rotate(5*30.0) # 5 o'clock * 30 degrees/hour
clock1.add(minutehand1)
clock1.add(hourhand1)
clock1.moveTo(150,75)
wall.add(clock1)

Draw second clock, lightblue, diameter 200, time 8pm, at (350, 150):
clock2 = Layer()
clockface2 = Circle(200/2.0) # 200 is clockface diameter
clockface2.setFillColor('lightblue')
clock2.add(clockface2)
minutehand2 = Path(Point(0,0), Point(0,-200*.48))
hourhand2 = Path(Point(0,0), Point(0,-200*.35))
hourhand2.rotate(8*30.0) # 8 o'clock * 30 degrees/hour
clock2.add(minutehand2)
clock2.add(hourhand2)
clock2.moveTo(350,150)
wall.add(clock2)

 3

 Part (a) [12 points]

Capture the repeated pattern in the code above by creating a function, called drawClock, that can
be used to draw clocks on the Canvas, such as those shown above. In part (b) on the next page, you
will write three invocations of your drawClock function to draw the two clocks and then add a
third in part (c).

Here, in part (a), you must define the drawClock function. Your drawClock function should
take 6 parameters that provide the following information: the Canvas object to draw the clock on, the
x-coordinate on the Canvas where the center of the clock should be placed, the y-coordinate on the
Canvas where the center of the clock should be placed, the diameter of the clock, the color of the
clock face, and the time the clock should display (an integer between 1 and 12).

def drawClock(canvas, x, y, diameter, color, hour):
 clock = Layer()
 clockface = Circle(diameter/2.0)
 clockface.setFillColor(color)
 clock.add(clockface)
 minutehand = Path(Point(0,0), Point(0,-diameter*.48))
 hourhand = Path(Point(0,0), Point(0,-diameter*.35))
 hourhand.rotate(hour*30.0)
 clock.add(minutehand)
 clock.add(hourhand)
 clock.moveTo(x,y)
 canvas.add(clock)

 4

Part (b) [6 points]

Write the two invocations of your drawClock function that will replace all of the code on page 2
except for the first two lines.

Draw first clock, red, diameter 125, time 5pm, at (150,75):
drawClock(wall, 150, 75, 125, 'red', 5)

Draw second clock, lightblue, diameter 200, time 8pm,
at (350, 150):
drawClock(wall, 350, 150, 200, 'lightblue', 8)

Part (c) [3 points]

Below, write one new invocation of your drawClock function that will additionally place a yellow
clock of diameter 175 showing 11pm with its center at (125, 250) as shown in this image:

Write your invocation here:

Draw third clock, yellow, size 175, time 11pm, at (125, 250):
drawClock(wall, 125, 250, 175, 'yellow', 11)

 5

Problem 2: Duplicate Removal [12 points]

Define a function named removeDuplicates that takes a list as its parameter and returns a new
list consisting of all elements in the original list but without any duplicate elements. For example:

removeDuplicates([1, 2, 2, 3, 2, 3, 1])
returns [1, 2, 3]

removeDuplicates(['john', 'george', 'paul', 'ringo', 'john',
 'paul', 'jones', 'rhys', 'price', 'jones'])
returns ['john', 'george', 'paul', 'ringo', 'jones', 'rhys', 'price']

removeDuplicates(range(0,10,2)+range(0,10,3))
returns [0, 2, 4, 6, 8, 3, 9]

The order of elements in your returned list does not matter. For example, it is fine for your function
to return [2, 3, 1] for the first example above.

def removeDuplicates(elts):
 result = [] # result is initially an empty list
 for elt in elts: # iterate over all elements in elts
 if elt not in result: # include each element
 # not already in result
 result.append(elt)
 return result

 6

Problem 3: Understanding Conditionals [16 points]

Fill in the table below to indicate the printed output for various values of the input variable x.

x = int(raw_input("Enter an integer x: "))
answer = ''
if x >= 60:
 answer = answer + 'A'
 if x < 75:
 answer = answer + 'B'
 elif x > 90:
 answer = answer + 'C'
 else:
 answer = answer + 'D'
elif x >= 50:
 answer = answer + 'E'
else:
 answer = answer + 'F'
if x < 35:
 answer = answer + 'G'
else:
 answer = answer + 'H'
 answer = answer + 'I'
print(answer)

x printed output

25 FG

35 FHI

45 FHI

55 EHI

65 ABHI

75 ADHI

85 ADHI

95 ADHI

Notes:
• There are two top-level if

statements that are executed
sequentially, each of which
concatenates at least one letter
to answer. So each answer
will have at least two letters.

• The else clause of the second
top-level if statement (when
x >=35) adds two letters.

• The first test of the first top-
level if statement (x >= 60)
has a nested if statement that
adds an extra letter.

• The number itself is never
displayed by the code.

 7

Problem 4: Random Pairs [12 points]

In the Python random module, there is a function named random.choice that takes a list
and returns a randomly selected element from that list. For example, here are some sample
invocations:

myList = [8, 2, 7, 5]
random.choice(myList) returns 7
random.choice(myList) returns 8
random.choice(myList) returns 5
random.choice(myList) returns 5
random.choice(myList) returns 8

Write a function called randomPair that, given a list with at least two different elements,
returns a pair (i.e., a tuple with two elements) of two distinct randomly selected elements from
the given list.
randomPair should not modify the input list in any way. Here are some sample invocations of
randomPair:

randomPair(myList) returns (5, 2)
randomPair(myList) returns (7, 8)
randomPair(myList) returns (2, 7)
randomPair(myList) returns (8, 5)
randomPair(myList) returns (7, 8)

Note that randomPair(myList) should never return (8,8) or any pair that contains two of
the same element.

In your definition, employ this strategy: randomly choose the first element of the pair from the
list, and then repeatedly randomly choose a second element from the list until that second
element is different from the first element. You should not invoke any function other than
random.choice

def randomPair1(elts):
 elt1 = random.choice(elts) # Pick first element of pair
 elt2 = random.choice(elts) # Pick second element of pair
 while elt2 == elt1: # Repick second element until it’s
 # different from first element
 elt2 = random.choice(elts)
 return (elt1, elt2)

 8

Problem 5: Understanding Loops & Sequences [39 points]

Part (a) [12 points]

Define a function named includesNumberBetween that takes three parameters:
 (1) a low number
 (2) a high number
 (3) a list of numbers
It returns True if one of the numbers in the list is between the low number and the high number
(inclusive). Otherwise it returns False.

includesNumberBetween(18, 40, [15, 7, 78, 63, 42]) returns False
includesNumberBetween(40, 42, [15, 7, 78, 63, 42]) returns True
includesNumberBetween(20, 100, [15, 7, 78, 63, 42]) returns True
includesNumberBetween(65, 75, [15, 7, 78, 63, 42]) returns False
includesNumberBetween(70, 80, [15, 7, 78, 63, 42]) returns True
includesNumberBetween(15, 20, [15, 7, 78, 63, 42]) returns True

Define your function here:

def includesNumberBetween(lo, hi, nums):
 for num in nums:
 if num >= lo and num <= hi: # Check if number is in range
 return True # If number in range, exit loop
 # (and function) immediately with True
 return False # only get here if no number in nums was in range

 9

Part (b) [15 points]

Consider the following functions loopy1 and test_loopy1:

def loopy1 (nums):
 i = 0
 while i < (len(nums) - 2):
 nums[i] = nums[i] + nums.pop()
 i = i + 1

def test_loopy1():
 testList = [7, 4, 9, 2, 3]
 loopy1(testList)
 print(str(testList))

What is printed by the invocation test_loopy1()? To receive full credit, you must show
your work, which can include iteration tables and memory diagrams.

Recall that lists are mutable. nums[i] = … changes the ith slot of the list nums, and
nums.pop() removes the last slot from a list and returns the value of the last slot before it is
removed. Below is an iteration table that shows the state variables of the iteration at the
beginning of each while loop iteration. Note that testList and nums name the same list in
memory, and that since nums.pop() removes a list slot, the value of len(nums) changes with
each step of the loop (a fact missed by many students).

The result printed by test_loopy1() is [10, 6, 9].

Many students who did not realize that the expression len(nums) – 2 changed over time attempted to
execute the while loop body when i is 2. This is problematic, because performing nums.pop() in this step
removes the slot with index 2, and then the slot assignment nums[2] = … fails with an index out of bound
error because there is no longer a slot with index 2 that can be assigned.

7 4 9 2 3

0 1 2 3 4

nums/testList
(before pop) i len(nums)-2 nums[i]

0 3 7

10 4 9 2

0 1 2 3

nums.pop()

3

1 2 4

10 6 9

0 1 2

2

2 1 not evaluated not evaluated

 10

Part (c) [12 points]

Below is a function loopy2:

def loopy2 (width, height, string):
 for y in range(height):
 line = ''
 for x in range(width):
 line = line + string[(y*width + x)%len(string)]
 print(line)

What is printed by the invocation loopy2(5,3,'code')?

In this program:

• height is 3 and range(3) is the list [0,1,2]
• width is 5 and range(5) is the list [0,1,2,3,4]
• string is 'code' and len('code') is 4

The following iteration table shows the steps in the nested loop. Although somewhat complicated, it has
exactly the same column and row arithmetic as the eggCarton function from PS5. Indeed, the purpose of
this problem was to see if you really understood the eggCarton function.

y x line

(before
assignment)

y*5 + x (y*5 + x)%4 ‘code’[(y*5 + x)%4] line
(after

assignment)
0 0 '' 0 0 'c' 'c'
0 1 'c' 1 1 'o' 'co'
0 2 'co' 2 2 'd' 'cod'
0 3 'cod' 3 3 'e' 'code'
0 4 'code' 4 0 'c' 'codec'

print('codec')
1 0 '' 5 1 'o' 'o'
1 1 'o' 6 2 'd' 'od'
1 2 'od' 7 3 'e' 'ode'
1 3 'ode' 8 0 'c' 'odec'
1 4 'odec' 9 1 'o' 'odeco'

print('odeco')
2 0 '' 10 2 'd' 'd'
2 1 'd' 11 3 'e' 'de'
2 2 'de' 12 0 'c' 'dec'
2 3 'dec' 13 1 'o' 'deco'
2 4 'deco' 14 2 'd' 'decod'

print('decod')

Note that: (1) line is reinitialized to the empty string '' for each iteration of the outer loop;
(2) each iteration of the inner loop adds one character from 'code' to the end of line. Since there are
 five such iterations, line has a maximal length of 5.
(3) print is called once for each iteration of the outer loop, so it is called 3 times on strings of length 5.

The final printed result has three lines of five characters each (excluding the terminating newline character):

 codec
odeco
decod

 11

 This is the end of the exam.

