
Solutions to the Review Problems for CS111 EXAM 1

October 12, 2007

October 13 Corrections: (1) The occurrence of “point” on page 7 has been changed to “location”;
(2) In the JEM on p. 11, the object reference labeled RW has been changed to the label RRW.

The first CS111 exam will be held in class on Friday, October 19. The exam is open notes: you
may refer to any handouts, your notes, and your assignments, but you may not refer to anyone
else’s materials. You may not use a computer during the exam.

The exam will cover material from Lectures 1–9, Labs 1–5, and Problem Sets 1–4. This includes
material through conditionals and booleans. Recursion will not be covered on the exam.

This handout includes some problems adapted from previous exams that you may find helpful
in studying for the exam. These problems are not necessarily indicative of the kinds of problems
you may be given on your exam or the length of your exam, but they do cover much of the material
you are expected to know for the exam.

Solutions to these problems have been posted. You will learn more if you refrain from consulting
them until you have solved the problems on your own.

1

Problem 1: Buggle World Execution

Consider the two Java classes in Fig. 1.

public class DoItWorld extends BuggleWorld {

public void run () {

DoItBuggle dewey = new DoItBuggle(); // run statement 1

int n = 5; // run statement 2

dewey.setPosition(new Location(n,n-2)); // run statement 3 *

dewey.brushUp(); // run statement 4

dewey.doit(Color.green, n-1); // run statement 5 *

dewey.doit(Color.blue, n+1); // run statement 6 *

dewey.forward(); // run statement 7

dewey.brushDown(); // run statement 8

dewey.forward(3); // run statement 9 *

}

}

class DoItBuggle extends Buggle {

public void doit (Color c, int n) {

Color oldColor = this.getColor();

this.setColor(c);

this.forward(n);

this.brushDown();

this.backward(n-2);

this.brushUp();

this.backward(2);

this.left();

this.setColor(oldColor);

}

}

Figure 1: Two Java classes.

Suppose that the run() method is invoked on an instance of DoItWorld which has a 10 × 10 grid of
cells. In the four grids on the following page, show the state of the grid directly after the execution
of each of the statements in the run() method body marked with a *.

In each grid, you should show the following:

1. Draw buggle dewey as a triangle “pointing” in the direction that the buggle is facing.

2. Indicate the current color of the buggle by putting the first letter of the color name inside
the triangle (e.g. B for blue, G for green, etc.).

3. Indicate the color of each non-white grid cell by putting the first letter of the color name
inside the cell (e.g. B for blue, G for green, etc.).

2

DoItWorld grid after the DoItWorld grid after the
execution of run() statement 3 execution of run() statement 5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

R

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

G GR

DoItWorld grid after the DoItWorld grid after the
execution of run() statement 6 execution of run() statement 9

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

G G

B

B

B

B

R

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

G G

B

B

B

B

R R RR

3

Problem 2: Debugging

The class declarations in Fig. 2 contain (at least) 10 errors (syntax errors and type errors).

public class ExamBuggleWorld extends BuggleWorld { // line 1

// line 2

public void run () { // line 3

Color c = Color.cyan(); // line 4

int n = 4 // line 5

ExamBuggle emma = ExamBuggle(); // line 6

emma.mystery1(c,n); // line 7

emma.mystery1(3,Color.red); // line 8

boolean answer = emma.mystery2(); // line 9

this.mystery3(); // line 10

} // line 11

} // line 12

// line 13

class ExamBuggle extends Buggle { // line 14

// line 15

public void mystery1(Color c, int n1) { // line 16

n2 = n1 + 1; // line 17

this.setColor(Color.c); // line 18

forward(n2); // line 19

this.dropBagel(); // line 20

// line 21

public boolean mystery2() { // line 22

this.isOverBagel(); // line 23

} // line 24

// line 25

public mystery3() { // line 26

this.dropBagel(); // line 27

} // line 28

// line 29

} // line 30

Figure 2:

In the table on the next page, for each of 10 errors in different lines of the above program give:

1. the line number of the error,

2. a brief description of the error, and

3. a corrected version of the line (i.e., with the error fixed).

You may list the errors in any order. You do not have to list them in the order in which they occur
in the program.

4

Error # Line # Brief description of error Corrected line

1 4
Color.cyan() is not a method

invocation
Color c = Color.cyan;

2 5
The local variable declaration int n = 4

is missing a semi-colon at the end
int n = 4;

3 6

There is a missing new in
the constructor method invocation

that creates an ExamBuggle

ExamBuggle emma = new

ExamBuggle();

4 8

The two arguments of
the instance method invocation
emma.mystery1(3,Color.red)

are in the wrong order

emma.mystery1(Color.red,3);

5 10

In this.mystery3(), this stands for
an instance of ExamBuggleWorld,
which does not understand the
mystery3 message; the recipient

should be an instance of ExamBuggle

emma.mystery3();

6 17
The local variable declaration
n2 = n1 + 1; is missing a type
for the contents of the variable

int n2 = n1 + 1;

7 18
Color.c attempts to reference
a non-existent class constant
rather than the parameter c

this.setColor(c);

8 21
The instance method declaration

for mystery1 is missing
a close squiggly brace.

}

9 23
The non-void method mystery2 is

missing a return statement.
return this.isOverBagel();

10 26
The method header for mystery3 is

missing the return type, void
public void mystery3() {

5

Problem 3: Buggle Methods

A class of Buggles enjoys doing window treatments. They call themselves Windowers. In
WindowWorld, wendy and winifred each do a window treatment:

public class WindowWorld extends BuggleWorld {

public void run() {

Windower wendy = new Windower(); // line 1

Windower winifred = new Windower(); // line 2

wendy.setPosition(new Location(2, 3)); // line 3

wendy.setColor(Color.orange); // line 4

wendy.forward(2); // line 5

wendy.dropBagel(); // line 6

wendy.left(); // line 7

wendy.forward(5); // line 8

wendy.dropBagel(); // line 9

wendy.left(); // line 10

wendy.forward(2); // line 11

wendy.dropBagel(); // line 12

wendy.left(); // line 13

wendy.forward(5); // line 14

wendy.dropBagel(); // line 15

wendy.left(); // line 16

winifred.setPosition(new Location(6, 5)); // line 17

winifred.setColor(Color.blue); // line 18

winifred.forward(3); // line 19

winifred.left(); // line 20

winifred.forward(3); // line 21

winifred.left(); // line 22

winifred.forward(3); // line 23

winifred.left(); // line 24

winifred.forward(3); // line 25

winifred.left(); // line 26

}

}

a. Assume there is a Windower class, which extends Buggle. Capture the repeated pattern
of code in the run() method above by creating a single method named decorateWindow() that
produces the same window treatments that wendy and winifred created above in lines 3–16 and
17–26. You may assume that your decorateWindow() method is being defined in the Windower

class. Your method should take 5 parameters that provide the following information:

6

• a location specifying the position of the window’s lower left corner,
• color of the window,
• width of the window (number of cells),
• height of the window (number of cells),
• and a boolean value that says whether the window corners should be decorated with bagels.

Assume an infinite grid, i.e., you don’t have to worry about whether your windows will fit in the
BuggleWorld grid.

answer:

public void decorateWindow(Location startPos, Color c, int width,

int height, boolean bagelInCorners) {

setPosition(startPos);

setColor(c);

forward(width - 1); // Need -1 to convert between cells and steps forward

if (bagelInCorners) {dropBagel();}

left();

forward(height - 1); // Need -1 to convert between cells and steps forward

if (bagelInCorners) {dropBagel();}

left();

forward(width - 1); // Need -1 to convert between cells and steps forward

if (bagelInCorners) {dropBagel();}

left();

forward(height - 1); // Need -1 to convert between cells and steps forward

if (bagelInCorners) {dropBagel();}

left();

}

We can make this solution more compact by factoring out repeated parts of this code using the
following windowSide helper method:

private void windowSide(int length, boolean bagelInCorners) {

forward(length - 1); // Need -1 to convert between cells and steps forward

if (bagelInCorners) {dropBagel();}

left();

}

public void decorateWindow(Location startPos, Color c, int width,

int height, boolean bagelInCorners) {

setPosition(startPos);

setColor(c);

windowSide(width,bagelInCorners);

windowSide(height,bagelInCorners);

windowSide(width,bagelInCorners);

windowSide(height,bagelInCorners);

}

b. Below, write the two invocations of your decorateWindow() method that will replace lines
3–16 and lines 17–26 in the run() method:

• invocation to replace lines 3–16:
answer:

wendy.decorateWindow(new Location(2, 3), Color.orange, 3, 6, true);

• invocation to replace lines 17–26:
answer:

winifred.decorateWindow(new Location(6, 5), Color.blue, 4, 4, false);

7

Problem 4: A Picture Method

Suppose that TriangleWorld is a subclass of PictureWorld that supplies you with a method
named wedge with the following contract:

public Picture wedge (Color w)

Returns a picture of a black-bordered wedge
of color w, as shown to the right. (The dotted
lines indicate the grid of the unit square, and
are not part of the picture.)

At the bottom of this page, your task is to write a method named threeTriangles

that takes two color parameters and returns the picture to the right, which contains
three black-bordered isosceles triangles: the lower-left and upper-right ones with a
color specified by the first parameter and the lower-right one with the color specified
by the second parameter. You may assume that the threeTriangles method is
defined within the TriangleWorld class, and so may use the wedge method in
addition to the methods in the PictureWorld contract (e.g., empty, clockwise90,
flipDiagonally, beside, etc.). You must not use the Poly class for constructing
polygons. You must not use fourPics or any methods (other than wedge) not
defined in the PictureWorld contract.

Partial credit will be awarded for writing a correct skeleton of the threeTriangles method and
for getting some of the triangles in the correct positions with the correct colors.
Hints: (1) Each of the isosceles triangles should be an appropriately transformed wedge picture;
(2) You may define local variables of type Picture within your method; (3) Think carefully — the
problem is trickier than it might first seem.

Put your definition of the threeTriangles method here.

answer:

// SOLUTION 1: Uses local Picture variables.
public Picture threeTriangles (Color c1, Color c2) {

Picture LLiso = beside(wedge(c1), empty()); // Lower-left triangle in color 1
Picture LRiso = beside(empty(),wedge(c2)); // Lower-right triangle in color 2
Picture URiso = clockwise180(flipDiagonally(LLiso));

// Upper-right triangle in color 1
return overlay(LLiso, overlay(LRiso, URiso));

}

// SOLUTION 2: Does not use local Picture variables.
public Picture threeTriangles (Color c1, Color c2) {

return overlay(// Upper-right triangle in color 1
clockwise180(flipDiagonally(beside(wedge(c1), empty()))),

overlay(// Lower-left triangle in color 1
beside(wedge(c1), empty()),

// Lower-right triangle in color 2
beside(empty(),wedge(c2))));

}

8

Problem 5: Booleans and Conditionals

a. Bud Lojack has written the following method in a rather unclear programming style:

public boolean isColdAndHeadingNorth () {

if (getColor().equals(Color.blue)) {

if (getHeading().equals(Direction.NORTH)) {

return true;

} else {

return false;

}

} else if (!getColor().equals(Color.blue)) {

return false;

} else if (!getHeading().equals(Direction.NORTH)) {

return false;

} else {

return true;

}

}

Rewrite Bud’s method in a much clearer style.

answer:

The second test expression, !getColor().equals(Color.blue), is only evaluated if the first
test expression, getColor().equals(Color.blue), evaluates to false. But this means that
!getColor().equals(Color.blue) is equivalent to !false or true. So the method can be
simplified to:

public boolean isColdAndHeadingNorth () {

if (getColor().equals(Color.blue)) {

if (getHeading().equals(Direction.NORTH)) {

return true;

} else {

return false;

}

} else if (true) {

return false;

} else if (!getHeading().equals(Direction.NORTH)) {

return false;

} else {

return true;

}

}

The statement if (true) {S1} else {S2}; can always be replaced by S1 , so the method can
be simplified further to:

public boolean isColdAndHeadingNorth () {

if (getColor().equals(Color.blue)) {

if (getHeading().equals(Direction.NORTH)) {

return true;

} else {

return false;

}

} else {

return false;

}

}

9

The pattern if (E) {return true;} else {return false;} can always be replaced by return

E;, so we can simplify further to yield:

public boolean isColdAndHeadingNorth () {

if (getColor().equals(Color.blue)) {

return getHeading().equals(Direction.NORTH);

} else {

return false;

}

}

Finally, the pattern if (E1) {return E2;} else {return false;} is equivalent to return E1 && E2;,
so the original method can be simplified to:

public boolean isColdAndHeadingNorth () {

return getColor().equals(Color.blue)

&& getHeading().equals(Direction.NORTH);

}

b. Define a Buggle method named isBoxedIn() that has no parameters and returns true if
a buggle is in a cell surrounded by walls on all four sides, and otherwise returns false. The
final state of the buggle when isBoxedIn() returns should be the same as the state of the buggle
when isBoxedIn() is invoked. You may not use recursion or iteration in your solution, but you
may define auxiliary methods if you wish.

answer: There are many different ways to define isBoxedIn(). Here we look at a few ap-
proaches.

One approach that is easy to read but is not particularly efficient is to use a separate predicate
for each of the four positions:

public boolean isBoxedIn() {

return isFacingWall() && isWallToLeft() && isWallInBack() && isWallToRight();

}

public boolean isWallToLeft() {

left();

boolean result = isFacingWall();

right();

return result;

}

public boolean isWallInBack() {

left();

boolean result = isWallToLeft();

right();

return result;

}

public boolean isWallToRight() {

left();

boolean result = isWallInBack();

right();

return result;

}

Note that isWallToRight() actually turns leftward three times, and could be made more efficient
by turning right once instead:

10

public boolean isWallToRight() {

right();

boolean result = isFacingWall();

left();

return result;

}

Even so, the buggle repeats a lot of turning in the helper predicates. The repeated turning can
be eliminated by performing all tests within isBoxedIn() itself. Although the result is more
efficient, it is rather difficult to read and write:

public boolean isBoxedIn() {

if (!isFacingWall()) { // No wall in front

return false;

} else {

left(); // Check left wall

if (!isFacingWall()) { // No wall to left

right(); // Return to initial heading before return

return false;

} else {

left(); // Check back wall

if (!isFacingWall()) { // No wall in back

right();

right(); // Return to initial heading before return

return false;

} else {

left(); // Check right wall

if (!isFacingWall()) { // No wall to right

left(); // Return to initial heading before return

// (three rights is a left)

return false;

} else { // Surrounded by four walls

left(); // Return to initial heading before return.

return true;

}

}

}

}

}

A more compact way to check all four sides is to maintain the result in a boolean variable (here
named result) that is updated at every wall. This is simple to read and write, but is not as
efficient as the above approach because it continues to visit all headings even after finding a
missing wall.

public boolean isBoxedIn() {

boolean result = isFacingWall(); // Check front wall

left();

result = result && isFacingWall(); // Check left wall

left();

result = result && isFacingWall(); // Check back wall

left();

result = result && isFacingWall(); // Check right wall

left(); // Return to facing front wall

return result:

}

11

Problem 6: Java Execution Model in BuggleWorld

Consider the following two class definitions:

public class RelayRaceWorld extends BuggleWorld {

public void run() {

RelayRunner r1 = new RelayRunner();

RelayRunner r2 = new RelayRunner();

RelayRunner r3 = new RelayRunner();

r2.setColor(Color.green);

r3.setColor(Color.blue);

r1.firstLeg(3, r2,r3);

}

}

class RelayRunner extends Buggle {

public void firstLeg(int length, RelayRunner next, RelayRunner last) {

this.forward(length);

next.setPosition(this.getPosition());

next.secondLeg(length, last);

}

public void secondLeg(int length, RelayRunner next) {

this.forward(length);

next.setPosition(this.getPosition());

next.thirdLeg(length);

}

public void thirdLeg(int length) {

this.forward(length);

}

}

The final JEM is shown on the next page. This figure shows how each expression is evaluated to
produce a value. You were asked only to show the final state of the JEM, so you were not required
to show all this, however, it is very useful to do your JEMs this way so you can keep track of the
computation. This problem tested your knowledge of parameters, variables, and method invocation
in a very detailed way.

12

Object LandRelayRaceWorld RRW

RelayRunner RR1

position 1,1 4,1

heading EAST

color red

brushDown? true

RelayRunner RR2

position 1,1 4,1 7,1

heading EAST

color red green

brushDown? true

RelayRunner RR2

position 1,1 7,1 10,1

heading EAST

color red blue

brushDown? true

Execution Land

RRW .run()

this RRW r1 RR1

r2 RR2 r3 RR3

RelayRunner r1 =

RR1

new RelayRunner();

RelayRunner r2 =

RR2

new RelayRunner();

RelayRunner r3 =

RR3

new RelayRunner();

RR2

r2 .setColor(

green

Color.green);

RR3

r3 .setColor(

blue

Color.blue);

RR1

r1 .firstLeg(3,

RR2

r2 ,

RR3

r3);

RR1 .firstLeg(3, RR2 , RR3)

this RR1 length 3

next RR2 last RR3

RR1

this .forward(

3

length);

RR2

next .setPosition(

4,1

RR1 .getPosition()

this.getPosition());

RR2

next .secondLeg(

3

length,

RR3

last);

RR2 .secondLeg(3, RR3)

this RR2 length 3 next RR3

RR2

this .forward(

3

length);

RR3

next .setPosition(

7,1

RR2 .getPosition()

this.getPosition());

RR3

next .thirdLeg(

3

length);

RR3 .thirdLeg(3)

this RR3 length 3

RR3

this .forward(

3

length);

13

Problem 7: Java Execution Model in PictureWorld

public class ExamPictureWorld extends PictureWorld {

public Picture meth1 (Picture a) {

Picture b = beside(a, empty());

Picture c = meth2(b);

return overlay(c, b);

}

public Picture meth2 (Picture a) {

Picture b = above(a, empty(), 0.75);

return clockwise90(b);

}

}

Figure 3: A sublcass of PictureWorld.

Consider the subclass of PictureWorld shown in Fig. 3. Supose that: EPW is an instance

of ExamPictureWorld, P0 is a Picture instance denoting the empty picture, P1 is a Picture

instance denoting the rightmost picture below:

ExamPictureWorld EPW

Picture P0 Picture P1

red blue

The dashed grid lines are not part of the pictures. They indicate coordinates within pictures. The
colors names are not part of picture P1 . They indicate the color of the two rectangles. Each of
the two rectangles is a solid color without any separately colored border.

On the next page, you should flesh out the Java Execution Model for the method invocation
EPW .meth1(P1). In the area labeled Execution Land, you should flesh out the contents of the

execution frame for this method invocation, as well as show the execution frame for the invocation
of meth2().

In the area labeled Object Land are the skeletons for the six Picture instances that are used
during the execution. The pictures labeled P0 and P1 have already been drawn for you; you

should draw pictures for the four new Picture instances P2 , P3 , P4 , and P5 that will be

created during the execution of EPW .meth1(P1). In each picture, you should label red areas
with the letter R and blue areas with the letter B. All other areas are presumed to be “clear”.

14

Object Land

ExamPictureWorld EPW

Picture P0 Picture P1

R B

Picture P2

R B

Picture P3

R B

Picture P4

R

B

Picture P5

R

B

Execution Land

EPW .meth1(P1)

this EPW a P1 b P2 c P4

Picture b =

P2

beside(a, empty());

Picture c =

P4

meth2(b);

return

P5

overlay(c, b);

EPW .meth2(P2)

this EPW a P2 b P3

Picture b =

P3

above(a, empty(), 0.75);

return

P4

clockwise90(b);

15

