
1

CS111 Computer Programming

Department of Computer Science
Wellesley College

File Input/Output (I/0)

Tuesday, November 27, 2007

File I/0 21-2

What is File I/O?  

A file is an abstraction for storing information 
(text, images, music, etc.) on a computer.  

Today we will explore how to read information 
from (Input) and write information to (Output) 
files in Java.   Input/Output is often 
abbreviated I/0.

We will focus on files with textual information, 
but the techniques we’ll learn generalize to any 
kind of information. 



2

File I/0 21-3

Writing to Standard Output  
System.out.println writes a string to the Java console (standard output file). 

public class WriteToConsole {
public static void main (String [ ] args) {

for (int i = 0;  i < args.length; i++) {
System.out.println(args[i]);

}
}

}

0 1 32 4

String []

args

“CS”
“111”

“rocks”
“3.141”

“Sam I am!”

> java WriteToConsole CS 111 rocks 3.141 “Sam I am!”
CS
111
rocks
3.141
Sam I am!

File I/0 21-4

Writing to a File  
import java.io.*; 

public class WriteToFile {

public static void main (String [ ] args) throws IOException {
String filename = args[0];
BufferedWriter writer = new BufferedWriter(new FileWriter(filename));
for (int i = 1;  i < args.length; i++) {

writer.write(args[i]);
writer.newLine(); // Same as writer.write("\n");

}
writer.close();

}
}

> java WriteToFile out.txt CS 111 rocks 3.141 “Sam I am!” CS
111 
rocks
3.141
Sam I am!

out.txt

FileWriter, BufferedWriter, and 
IOException live in the java.io package

File operations can generate IOExceptions�

Finish any output to file.
File is not guaranteed to 
contain all output until closed. 

Idiom for creating a file writer.
If file doesn’t exist, creates it.
If file exists, overwrites it. 

Append string to end of file. 



3

File I/0 21-5

What’s An Exception?    
• Java methods use exceptions to tell the calling code, 

“Something bad happened.  I failed.”

• Exceptions are used for reliability: they describe and allow 
recovery from errors that occur while a program is running.

• When an unusual condition arises, a method stops its normal  
execution and throws an exception describing the problem.

• If method X calls method Y and Y throws an exception, 
X may either handle the exception by catching it or allow the  
exception to propagate to X’s caller.  You will not learn how  
to catch exceptions in CS111 (but you will in CS230!)

• An exception that propagates all the way up to the top of  
the program results in an error message. E.g.

Exception in thread “AWT-EventQueue-0”
BuggleException:  FORWARD: Can’t move through wall!

at Buggle.forwardStep(BuggleWorld.java:2040)
at Buggle.forward(BuggleWorld.java:2034)

Y()

X()

Top execution
frame 

error!

…

File I/0 21-6

Declaring Exceptions in Method Headers   

Java has two categories of exceptions:

• checked exceptions (such as IOException) must be declared 
in the header of any method that throws or propagates them.

// Java’s method for writing a string to a file
public void write (String s)  throws IOException

Many methods of classes in the java.io package 
throw IOException. 

• unchecked exceptions need not be explicitly declared. 
Examples of unchecked exceptions:

NullPointerException

ArrayIndexOutOfBoundsException

Exceptions from all CS111 classes (Buggle, Turtle, IntList, etc.)



4

File I/0 21-7

Reading From a File  
import java.io.*; 

// Display the contents of a file, line by line
public class DisplayFile {

public static void main (String [ ] args) throws IOException {
String filename = args[0];
BufferedReader reader = new BufferedReader(new FileReader(filename));
String line = reader.readLine(); // read the first line in file
while (line != null) {
System.out.println(line);
line = reader.readLine(); // read next line from the file.

}
reader.close(); // Tidy up

}
}

> java DisplayFile out.txt
CS
111
rocks
3.141
Sam I am!

CS
111 
rocks
3.141
Sam I am!

out.txt

Idiom for creating a file reader.
Throws an IOException if file
doesn’t exist. 

readLine() returns next line 
from file as a string (without 
trailing newline character). 
It returns null if there are no 
more lines in the file. 

File I/0 21-8

Transforming a File  

The sun did not shine.
It was too wet to play.
So we sat in the house
All that cold, cold, wet day.

cat4.txt
THE SUN DID NOT SHINE.
IT WAS TOO WET TO PLAY.
SO WE SAT IN THE HOUSE
ALL THAT COLD, COLD, WET DAY.

cat4Upper.txt

> java UpperCaseFile cat4.txt cat4Upper.txt

Let’s write a Java application that uppercases each line of a file
(using the String toUpperCase() method).

input filename output filename



5

File I/0 21-9

UppercaseFile

import java.io.*; 

// Application that writes an output file that uppercases each line 
// of an input file
public class UpperCaseFile {

public static void main (String [ ] args) throws IOException {
String infile = args[0];
String outfile = args[1]; 
BufferedReader reader = new BufferedReader(new FileReader(infile));
BufferedWriter writer = new BufferedWriter(new FileWriter(outfile));
String line = reader.readLine(); // read the first line in file
while (line != null) { // readLine() returns null when reaches end of file
writer.write(line.toUpperCase());
writer.newLine();
line = reader.readLine(); // read next line from the file.

}
reader.close(); // Tidy up
writer.close();

}
}

File I/0 21-10

Sorting the Lines of a File  

elephant
siamese cat
zebra
aardvark
great white shark
dingo

animals.txt

aardvark
dingo
elephant
great white shark
siamese cat
zebra

animalsSorted.txt

> java SortLines animals.txt animalsSorted.txt

Let’s write a Java application that sorts the lines of a file.

Assume we can use the following method from the 
CS111 StringArray class:

public static sort (String [] strings); 
// Modifies strings so that its elements are in dictionary order.

input filename output filename



6

File I/0 21-11

SortLines: A Modular Solution  

fileToLineArray

StringArray.sort

stringArrayToFile

input file

array of lines from file

sorted array of lines from file

output file

File I/0 21-12

SortLines: Coding The Modular Solution  

// Returns a string array containing the lines of the file named filename.
public static String[] fileToLineArray(String filename) 

throws IOException {
// flesh out this skeleton

}

// Writes each element of a string array to a line of a file named filename.
public static void stringArrayToFile(String[] strings, String filename) 

throws IOException { 
// flesh out this skeleton

}
}

import java.io.*; 

// Application that writes an output file containing the 
// sorted lines of the input file
public class SortLines {

public static void main (String [ ] args) throws IOException {
String infile = args[0];
String outfile = args[1]; 
String[] lines = fileToLineArray(infile);
StringArray.sort(lines);
stringArrayToFile(lines, outfile);

}



7

File I/0 21-13

stringArrayToFile() is Easy  

// Writes each element of a string array to a line of a file named filename.
public static void stringArrayToFile(String[] strings, String filename) 

throws IOException {
BufferedWriter writer = new BufferedWriter(new FileWriter(filename));
for (int i = 0; i < strings.length; i++) {
writer.write(strings[i]);
writer.newLine(); 

}
writer.close();

}

File I/0 21-14

fileToLineArray() is Trickier

// Returns a string array containing the lines of the file named filename.
public static String[] fileToLineArray(String filename) throws IOException {

BufferedReader reader = new BufferedReader(new FileReader(filename));

int numLines = ??? 

String [] lines = new String[numLines];
for (int i = 0; i < numLines; i++) {

lines[i] = reader.readLine(); 
}
reader.close();
return lines;

}

How do we know the number of lines? 



8

File I/0 21-15

fileToLineArray(): Solution 1

// Returns a string array containing the lines of the file named filename.
public static String[] fileToLineArray(String filename) throws IOException {

BufferedReader reader = new BufferedReader(new FileReader(filename));
String header = reader.readLine(); // Read integer header in first line    
int numLines = Integer.parseInt(header);
String [] lines = new String[numLines];
for (int i = 0; i < numLines; i++) {

lines[i] = reader.readLine(); 
}
reader.close();
return lines;

}

6
elephant
siamese cat
zebra
aardvark
great white shark
dingo

animalsWithHeader.txt
Idea: Assume the first line of every file is an integer
specifying the number of lines in the rest of the file.

This is sensible for specialized files (like the image
files in PS9), but not all files will have this format. 

File I/0 21-16

fileToLineArray(): Solution 2

// Returns a string array containing the lines of the file named filename.
public static String[] fileToLineArray(String filename) throws IOException {

BufferedReader reader = new BufferedReader(new FileReader(filename));
int numLines = countLines(filename); // Count the lines in the file.
String [] lines = new String[numLines];
for (int i = 0; i < numLines; i++) {

lines[i] = reader.readLine(); 
}
reader.close();
return lines;

}

Idea: Count the lines in a file first in a separate pass over the file.
This works for any file, but processes all the lines twice.

// Returns the number of lines in a file. 
public static int countLines (String filename) throws IOException {

BufferedReader reader = new BufferedReader(new FileReader(filename));
int count = 0;
String line = reader.readLine();    
while (line != null) {
count++;
line = reader.readLine();

}
reader.close();
return count;

}



9

File I/0 21-17

fileToLineArray(): Solution 3
Idea: Read the lines of the file into a string list and then convert the list to an array.
This works for any file and only reads the file once, but uses extra storage for list. 

// Returns a string array containing the lines of the file named filename.
// This version reads the lines into a list first, and then converts the list to an array.
public static String[] fileToLineArray(String filename) throws IOException {

BufferedReader reader = new BufferedReader(new FileReader(filename)); 
StringList lines = StringList.empty(); // lines is a list of file lines in reverse order
String line = reader.readLine();
while (line != null) {
lines = StringList.prepend(line, lines); // prepend lines to list in reverse order
line = reader.readLine();

}
return listToArray(StringListOps.reverse(lines)); // reverse lines to get original order

}

// Convert a list of strings to an array of strings
public static String[] listToArray (StringList list) {
int len = StringListOps.length(list); 
String [] array = new String[len];
for (int i = 0; i < len; i++) {
array[i] = StringList.head(list);
list = StringList.tail(list);

}
return array;

}

File I/0 21-18

Sorting the Words of a File  

elephant
siamese cat
zebra
aardvark
great white shark
dingo

animals.txt

aardvark
cat
dingo
elephant
great
shark
siamese
white
zebra

animalsSortedWords.txt

> java SortWords animals.txt animalsSortedWords.txt

Let’s write a Java application that sorts the words of a file.

input filename output filename



10

File I/0 21-19

SortWords: Just A Modification To Sort Lines  

public static void main (String [ ] args) 
throws IOException {

String infile = args[0];
String outfile = args[1]; 
String[] lines = fileToLineArray(infile);
String[] words = lineArrayToWordArray(lines);
StringArray.sort(words);
stringArrayToFile(words, outfile);

}

fileToLineArray

lineArrayToWordArray

input file

array of lines from file

array of words from file

StringArray.sort

stringArrayToFile

sorted array of words from file

output file

File I/0 21-20

How to Write lineArrayToWordArray?   

public static String[] lineArrayToWordArray(String[] lines)  {
// Since we don't know how many words there will be,
// we create a StringList of all the words and convert
// this back to an array.
StringList wordList = StringList.empty();
for (int i = 0; i < lines.length; i++) {

// Splits line into “words” separated by space, “ ”.
String[] words_in_line = lines[i].split(" ");
wordList = StringListOps.append(wordList,

arrayToList(words_in_line));
}
return listToArray(wordList);

}

Hint: Use split(“ ”) from the String class to break lines into “words”
(character sequences separated by a space).



11

File I/0 21-21

Reading Input from the Java Console 
The Java console (e.g., the Dr. Java Interaction Pane) can be viewed as a special 
kind of file (known as the standard input/output file).  

We already know how to write to standard output using System.out.println.

We can read from it as well by creating a reader for it  using this idiom:

new BufferedReader(new InputStreamReader(System.in));

Here’s an example of interacting with the InteractiveUpperCase application 
defined on the next slide: 

> java InteractiveUpperCase
Type a line to convert to upper case (or quit to exit)>

THIS IS A TEST; IT IS ONLY A TEST.
Type a line to convert to upper case (or quit to exit)>

ANOTHER EXAMPLE
Type a line to convert to upper case (or quit to exit)>

>

This is a test; it is only a test.

another example

quit

File I/0 21-22

InteractiveUpperCase Application 
import java.io.*; 

// Application that interactively prompts the user for a string,
// which is then displayed in upper case form. 
public class InteractiveUpperCase {

public static void main (String [ ] args) throws IOException {
BufferedReader reader = 

new BufferedReader(new InputStreamReader(System.in));
System.out.println("Type a line to convert to upper case (or quit to exit)> ");
String line = reader.readLine(); 
while (! line.equals("quit")) { 
System.out.println(line.toUpperCase());
System.out.println("Type a line to convert to upper case (or quit to exit)> ");
line = reader.readLine(); 

}
reader.close();

}
}


