
CS111 Computer Programming

Department of Computer Science
Wellesley College

More Arrays

Tuesday, November 13, 2007

Sorting and Nested Arrays

 Arrays 17-2

Destructive Array Sorting

0

8

1

7

3

9

2

1

4

6

int []

numsBefore:

0

1

1

6

3

8

2

7

4

9

int []

numsAfter:

IntArray.sort(nums)

public static void sort (int [] a);
Modify the array a so that all the elements
of a are sorted from low to high.

 Arrays 17-3

0

8

1

7

3

9

2

1

4

6

0

7

1

8

3

9

2

1

4

6

0

1

1

7

3

9

2

8

4

6

0

1

1

7

3

9

2

8

4

6

0

1

1

6

3

8

2

7

4

9

One Sorting Algorithm: Insertion Sort

step 1

step 2

step 3

step 4

step 5

 Arrays 17-4

0

8

1

7

3

9

2

1

4

6

0

7

1

8

3

9

2

1

4

6

0

1

1

7

3

9

2

8

4

6

0

1

1

7

3

9

2

8

4

6

0

1

1

6

3

8

2

7

4

9

Thinking about Insertion Sort
Let a[i..j] stand for the slots of array a
between indices i and j (inclusive).

What can you say about a[0..(i-1)] at
step i of the algorithm?

step 1

step 2

step 3

step 4

step 5

 Arrays 17-5

0

8

1

7

3

9

2

1

4

6

0

7

1

8

3

9

2

1

4

6

0

1

1

7

3

9

2

8

4

6

0

1

1

7

3

9

2

8

4

6

0

1

1

6

3

8

2

7

4

9

Insertion Sort: Loop Invariant
Insertion sort is based on the following
loop invariant (something that is true at
the beginning of every step of an
iteration):

At the beginning of the ith step to
insertion sort, a[0..(i-1)] is sorted.

This is true for the first step (i=1)
because a[0..0] is sorted (it has only one
element).

To make the invariant true for the (i+1)th
step, the ith step moves the value in a[i]
leftward until a[0..i] is sorted.

If there are n elements in a, the array
mustbe sorted by the beginning of the
nth step, since a[0..(n-1)] is sorted.

step 1

step 2

step 3

step 4

step 5

 Arrays 17-6

0

8

1

7

3

9

2

1

4

6

0

7

1

8

3

9

2

1

4

6

0

1

1

7

3

9

2

8

4

6

0

1

1

7

3

9

2

8

4

6

0

1

1

6

3

8

2

7

4

9

Insertion Sort in Java
Suppose we have been given a helper method
that performs the leftward insertion:

 public static void insert (int [] a, int i);
 Assume a[0..(i-1)] is sorted. Move the value
 in a[i] leftward until a[0..i] is sorted.

Write sort() using the insertion sort algorithm:

public static void sort (int [] a) {

}

 Arrays 17-7

0

1

1

7

3

9

2

8

4

6

How To Insert?
6val

0

1

1

7

3

9

2

8

4

9
6val

0

1

1

7

3

8

2

8

4

9
6val

0

1

1

7

3

8

2

7

4

9
6val

0

1

1

6

3

8

2

7

4

9
6val

 Arrays 17-8

0

1

1

7

3

9

2

8

4

6

Leftward Insertion
6val

0

1

1

7

3

9

2

8

4

9
6val

0

1

1

7

3

8

2

8

4

9
6val

0

1

1

7

3

8

2

7

4

9
6val

0

1

1

6

3

8

2

7

4

9
6val

To insert a[i] leftward, save it in a
variable val and bubble down the
“hole” left behind (shown in green)
to the spot where val would be in
correct sorted order.

Finally, fill the hole with val.

In Java:

public static void insert (int [] a, int i) {
 int val = a[i]; // remember value in a[i]

}

 Arrays 17-9

Insertion Sort via Nested Loops
public static void sort (int [] a) {
 for (int i = 1; i < a.length; i++) {
 // Loop invariant: a[0..(i-1)] is sorted
 // Insert a[i] into a[0..(i-1)] so that a[0..i] is sorted.
 int val = a[i]; // remember value in a[i] before we overwrite it.
 int j = i; // initialize insertion index j.
 while ((j > 0) && (a[j-1] > val)) { // order of tests is crucial!
 a[j] = a[j-1]; // shift value in a[j-1] to right = shift hole in a[j] to left.
 j--;
 }
 // At this point, either j = 0 or ((j >=1) && (a[j-1] <= val))
 a[j] = val; // Insert val where it belongs in sorted order.
 }
 // At this point, a[0..(a.length-1)], so whole array is sorted.
}

 Arrays 17-10

Sorting Discussion

o Insertion sort can be modified to work on other kinds of
 elements. For example, to sort arrays of strings, change

(a[j-1] > val) to (a[j-1].compare(val) > 0)

o There are many other algorithms for sorting arrays:

• You will study one of them (selection sort) this week in lab.

• Several more sorting algorithms are presented in CS230.

 Arrays 17-11

Arrays of Arrays

0

8

1

7

3

9

2

1

4

6

int[]

0

4

1

0

int[]

int[]

0

5

1

2

2

3

int[]

0

1

2

3

int[][]

aa

Arrays can have elements of any type,
including other arrays.

Here is an array of integer arrays.

 Arrays 17-12

Array Diagrams Illustrate Sharing

0

8

1

7

3

9

2

1

4

6

int[]

0

4

1

0

int[]

int[]

0

5

1

2

2

3

int[]

0

1

2

3

int[][]

aa

What do the following statements
do to the array diagram?

aa[0][1] = aa[1][0];

aa[2] = aa[0];

aa[0][2] = aa[2][0];

aa[3][1] = aa[1][0] + aa[2][2];

 Arrays 17-13

Creating Arrays of Arrays

0

8

1

7

3

9

2

1

4

6

int[]

0

4

1

0

int[]

int[]

0

5

1

2

2

3

int[]

0

1

2

3

int[][]

aa

How can we create aa?

Way 1:
int [] [] aa = new int [] []
 {{8,7,1,9,6},
 {4,0},{},{5,2,3}};

Way 2:

int [] [] aa = new int [4] [];
aa[0] = new int [] {8,7,1,9,6};
aa[1] = new int [] {4,0};
aa[2] = new int [] {};
aa[3] = new int [] {5.2.3];

Way 3:

int [] [] aa = new int [4] [];
aa[0] = new int [5];
aa[0][0] = 8;
aa[0][1] = 7;
aa[0][2] = 1;
…

 Arrays 17-14

Summing Nested Arrays

// Sum all the integers in an array of array of ints
public static int sumArrayofArrays (int [] [] aai) {

}

 Arrays 17-15

Regular 2D Array of Arrays

A two-dimensional (2D) array is
regular if each sub-array has the
same length.

Certain operations make sense
on regular 2D arrays that
don’t make sense on irregular
ones -- e.g. summing the columns
of the array.

 sumColumns(bb);
 // returns the 1D array {21, 5, 17, 15}

0

5

1

2

3

6

2

7

int[]

0

1

2

int[][]

bb
0

9

1

0

3

4

2

8

int[]

0

7

1

3

3

5

2

2

int[]

 Arrays 17-16

sumColumns()

public static int[] sumColumns (int[][] aai) {
 // Assume aai is a regular 2D array

}

0

5

1

2

3

6

2

7

int[]

0

1

2

int[][]

bb
0

9

1

0

3

4

2

8

int[]

0

7

1

3

3

5

2

2

int[]

