
The cs111 Text

Jennifer Stephan and Allen Downey

First Edition

2

The cs111 Text
First Edition

Copyright (C) 2001 Allen B. Downey

This book is an Open Source Textbook (OST). Permission is granted to
reproduce, store or transmit the text of this book by any means, electrical,
mechanical, or biological, in accordance with the terms of the GNU General
Public License as published by the Free Software Foundation (version 2).
This book is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
The original form of this book is LaTeX source code. Compiling this LaTeX

source has the effect of generating a device-independent representation of a
textbook, which can be converted to other formats and printed. All intermediate
representations (including DVI and Postscript), and all printed copies of the
textbook are also covered by the GNU General Public License.
The LaTeX source for this book, and more information about the Open

Source Textbook project, is available from

http://rocky.wellesley.edu/downey/ost

or by writing to Allen B. Downey, Computer Science Dept, Wellesley College,
Wellesley, MA 02482.
The GNU General Public License is available from www.gnu.org or by writ-

ing to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.
This book was typeset by the author using LaTeX and dvips, which are both

free, open-source programs.

Cover Art by Scott H. Reed
Copyright (C) 1999 Scott H. Reed

All rights reserved. No part of the cover art may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electrical, me-
chanical or biological, without prior written permission of the copyright holder:
Scott H. Reed, 5639 Mayflower Hill, Waterville, ME 04901.

3

Acknowledgements

The material presented in this book has been developed collaboratively by
professors at Wellesley College. The microworlds—including BuggleWorld, Pic-
tureWorld and TurtleWorld—and the Java Execution Model (JEM) were devel-
oped by Franklyn Turbak.
Other professors who have added to and refined this material include Jennifer

Stephan, Constance Royden, Elaine Yang, LeeAnn Tzeng, Jean Herbst, and
Sergio Alvarez.
Parts of the text are extracted from How To Think Like a Computer Scien-

tist, by Allen Downey.
Chava Kronenberg is a Wellesley student that worked for a summer with

these materials, creating the original source files based on Jennifer Stephen’s
lecture notes.

4

Contents

1 The way of the program 1
1.1 What is a programming language? 1
1.2 What is a program? . 3
1.3 Three big ideas . 4
1.4 What is debugging? . 5
1.5 Formal and natural languages 7
1.6 Glossary . 8

2 Object Oriented Programming 11
2.1 Buggles . 11
2.2 A Buggle is born . 11
2.3 Changing instance variables . 12
2.4 Methods with arguments . 13
2.5 Variable declaration . 14
2.6 Classes . 14
2.7 Constants . 15
2.8 Expressions . 15
2.9 Constructors . 16
2.10 Sending messages . 16
2.11 Void and fruitful methods . 17
2.12 Comments . 18
2.13 More nesting . 18
2.14 Contracts . 19
2.15 Glossary . 20

3 Methods 23
3.1 Debugging . 23
3.2 Concatenation . 24
3.3 BuggleWorld . 25
3.4 The Java Execution Model . 26
3.5 Execution Land . 26
3.6 Object Land . 27
3.7 Writing your own methods . 27
3.8 Writing methods with parameters 29

i

ii CONTENTS

3.9 Local variables . 31
3.10 Flow of execution . 31

3.11 Picture objects . 32
3.12 Writing fruitful methods . 32
3.13 Glossary . 33

4 Conditionals 35
4.1 Floating-point . 35
4.2 Converting from double to int 36
4.3 Multiple assignment . 37

4.4 Conditional execution . 38
4.5 Alternative execution . 38
4.6 Chained conditionals . 39
4.7 Nested conditionals . 39
4.8 Boolean expressions . 40
4.9 Logical operators . 40
4.10 Boolean methods . 41
4.11 Variables inside conditionals . 42
4.12 Glossary . 44

5 Recursion 45
5.1 Recursion . 45
5.2 Recursive definition . 46
5.3 Fruitful recursive methods . 47
5.4 Leap of faith . 49
5.5 Another example . 49
5.6 Recursion in BuggleWorld . 50

5.7 Recursion with parameters . 51
5.8 Recursion with return values 52
5.9 Infinite recursion . 53
5.10 Glossary . 53

6 Lists 55
6.1 The modulus operator . 55
6.2 Integer Linked Lists . 55

6.3 IntList methods . 56
6.4 Math methods . 57
6.5 Extending IntList . 57
6.6 Anatomy of an IntList . 58
6.7 Printing IntLists . 58
6.8 Traversing lists . 59
6.9 Checking lists . 60
6.10 Filtering a list . 61
6.11 ObjectLists . 61
6.12 Glossary . 62

CONTENTS iii

7 Iteration 63
7.1 The while statement . 63
7.2 Tables . 64
7.3 Two-dimensional tables . 66
7.4 Encapsulation and generalization 67
7.5 Methods . 68
7.6 More encapsulation . 69
7.7 More generalization . 69
7.8 Loops and lists . 71
7.9 Glossary . 71

8 Objects as containers 73
8.1 Points and Rectangles . 73
8.2 Packages . 73
8.3 Point objects . 74
8.4 Instance variables . 74
8.5 Objects as parameters . 75
8.6 Rectangles . 75
8.7 Objects as return types . 76
8.8 Objects are mutable . 76
8.9 Aliasing . 77
8.10 null . 78
8.11 Garbage collection . 79
8.12 Objects and primitives . 80
8.13 Glossary . 80

9 Arrays 83
9.1 Accessing elements . 84
9.2 Copying arrays . 84
9.3 for loops . 85
9.4 Arrays and objects . 86
9.5 Array length . 86
9.6 Random numbers . 87
9.7 Two-Dimensional Arrays . 87
9.8 The Vector class . 89
9.9 The Iterator class . 90
9.10 Glossary . 90

10 Create your own objects 91
10.1 Class definitions and object types 91
10.2 Time . 92
10.3 Constructors . 92
10.4 More constructors . 93
10.5 Creating a new object . 94
10.6 Printing an object . 95
10.7 Operations on objects . 96

iv CONTENTS

10.8 Pure functions . 96

10.9 Modifiers . 98

10.10 Which is best? . 99

10.11 Incremental development vs. planning 99

10.12 Generalization . 100

10.13 Algorithms . 100

10.14 Glossary . 101

11 Data abstraction and Graphics 103

11.1 The BankAccount class . 103

11.2 Data Abstraction . 106

11.3 Applets . 106

11.4 The paint method . 107

11.5 Drawing . 108

11.6 Coordinates . 108

11.7 A lame Mickey Mouse . 109

11.8 Other drawing commands . 110

11.9 A fractal Mickey Mouse . 111

11.10 Glossary . 112

12 Strings and things 113

12.1 Length . 114

12.2 Traversal . 114

12.3 Run-time errors . 115

12.4 Reading documentation . 115

12.5 The indexOf method . 116

12.6 Looping and counting . 117

12.7 Increment and decrement operators 117

12.8 Character arithmetic . 118

12.9 Strings are immutable . 119

12.10 Strings are incomparable . 120

12.11 Glossary . 121

A Contracts/APIs 123

A.1 Buggle Contract . 124

A.2 BuggleWorld Contract . 126

A.3 Point Contract . 126

A.4 Direction Contract . 126

A.5 PictureWorld Contract . 128

A.6 Turtle World Contract . 130

A.7 IntList Contract . 131

A.8 ObjectList Contract . 132

CONTENTS v

B Debugging 133
B.1 Compile-time errors . 133
B.2 Run-time errors . 135
B.3 Semantic errors . 138

C Program development plan 143

vi CONTENTS

Chapter 1

The way of the program

The goal of this book, and this class, is to teach you to think like a computer
scientist. I like the way computer scientists think because they combine some of
the best features of Mathematics, Engineering, and Natural Science. Like math-
ematicians, computer scientists use formal languages to denote ideas (specifi-
cally computations). Like engineers, they design things, assembling components
into systems and evaluating tradeoffs among alternatives. Like scientists, they
observe the behavior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem-solving.
By that I mean the ability to formulate problems, think creatively about solu-
tions, and express a solution clearly and accurately. As it turns out, the process
of learning to program is an excellent opportunity to practice problem-solving
skills. That’s why this chapter is called “The way of the program.”

On one level, you will be learning to program, which is a useful skill by itself.
On another level you will use programming as a means to an end. As we go
along, that end will become clearer.

1.1 What is a programming language?

The programming language you will be learning is Java, which is relatively new
(Sun released the first version in May, 1995). Java is an example of a high-level
language; other high-level languages you might have heard of are Pascal, C,
C++ and FORTRAN.

As you might infer from the name “high-level language,” there are also
low-level languages, sometimes referred to as machine language or assembly
language. Loosely-speaking, computers can only execute programs written in
low-level languages. Thus, programs written in a high-level language have to
be translated before they can run. This translation takes some time, which is a
small disadvantage of high-level languages.

But the advantages are enormous. First, it is much easier to program in
a high-level language; by “easier” I mean that the program takes less time to

1

2 CHAPTER 1. THE WAY OF THE PROGRAM

write, it’s shorter and easier to read, and it’s more likely to be correct. Secondly,
high-level languages are portable, meaning that they can run on different kinds
of computers with few or no modifications. Low-level programs can only run on
one kind of computer, and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level lan-
guages. Low-level languages are only used for a few special applications.

There are two ways to translate a program; interpreting or compiling.
An interpreter is a program that reads a high-level program and does what it
says. In effect, it translates the program line-by-line, alternately reading lines
and carrying out commands.

interpreter

source
code

The interpreter
reads the
source code...

... and the result
appears on
the screen.

A compiler is a program that reads a high-level program and translates it all
at once, before executing any of the commands. Often you compile the program
as a separate step, and then execute the compiled code later. In this case, the
high-level program is called the source code, and the translated program is
called the object code or the executable.

As an example, suppose you write a program in C. You might use a text
editor to write the program (a text editor is a simple word processor). When
the program is finished, you might save it in a file named program.c, where
“program” is an arbitrary name you make up, and the suffix .c is a convention
that indicates that the file contains C source code.

Then, depending on what your programming environment is like, you might
leave the text editor and run the compiler. The compiler would read your source
code, translate it, and create a new file named program.o to contain the object
code, or program.exe to contain the executable.

object
code executor

The compiler
reads the
source code...

... and generates
object code.

You execute the
program (one way
or another)...

... and the result
appears on
the screen.

source
code compiler

1.2. WHAT IS A PROGRAM? 3

The Java language is unusual because it is both compiled and interpreted.
Instead of translating Java programs into machine language, the Java compiler
generates Java byte code. Byte code is easy (and fast) to interpret, like machine
language, but it is also portable, like a high-level language. Thus, it is possible
to compile a Java program on one machine, transfer the byte code to another
machine over a network, and then interpret the byte code on the other ma-
chine. This ability is one of the advantages of Java over many other high-level
languages.

The compiler
reads the
source code...

... and the result
appears on
the screen.

source
code compiler code

byte

x.java x.class

... and generates
Java byte code. reads the byte

code...

interpreter

A Java interpreter

Although this process may seem complicated, the good news is that in
most programming environments (sometimes called development environments),
these steps are automated for you. Usually you will only have to write a pro-
gram and type a single command to compile and run it. On the other hand, it
is useful to know what the steps are that are happening in the background, so
that if something goes wrong you can figure out what it is.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a com-
putation. The computation might be something mathematical, like solving a
system of equations or finding the roots of a polynomial, but it can also be
a symbolic computation, like searching and replacing text in a document or
(strangely enough) compiling a program.
The instructions (or commands, or statements) look different in different

programming languages, but there are a few basic functions that appear in just
about every language:

input: Get data from the keyboard, or a file, or some other device.

output: Display data on the screen or send data to a file or other device.

math: Perform basic mathematical operations like addition and multiplication.

testing: Check for certain conditions and execute the appropriate sequence of
statements.

repetition: Perform some action repeatedly, usually with some variation.

4 CHAPTER 1. THE WAY OF THE PROGRAM

Believe it or not, that’s pretty much all there is to it. Every program you’ve
ever used, no matter how complicated, is made up of functions that look more or
less like these. Thus, one way to describe programming is the process of breaking
a large, complex task up into smaller and smaller subtasks until eventually the
subtasks are simple enough to be performed with one of these simple functions.

1.3 Three big ideas

There are three important concepts at the core of this class: Divide, Conquer
and Glue, Abstraction, and Modularity.

1.3.1 Big Idea 1: Divide, Conquer and Glue

Divide, conquer and glue is the primary technique we will use to solve program-
ming problems. Suppose that you have a problem P and you want its solution
S. Divide, conquer and glue works in the following way:

Divide the problem into sub-problems.

Conquer by solving the individual sub-problems.

Glue the sub-solutions into one big solution!

We use this type of problem-solving every day. Let’s say you have a research
paper due for English. You might divide that problem by first doing the research,
then taking notes from different sources on notecards, then sitting down at a
computer to write the paper. In order to ‘conquer’ the first part, perhaps
you would need to go to the library or research online. The second part might
require buying notecards and writing down all the notes, and you might conquer
the third portion by going to the LTC for the evening. In any case, you have
conquered all the sub-problems, and after gluing them all together you would
have a completed English paper!

1.3.2 Big Idea 2: Abstraction

Abstraction is a way of capturing common patterns by taking two or more things
that look the same from a certain perspective and giving them a common name.
Then, you can just reference the name to reference either item.
Let’s take the two cars in my garage. One is a red 1993 Toyota, the other

is a white 1994 Toyota. I can substitute one for the other, and they have many
similar qualities. They have the same “shape”. Are they identical? No. Maybe
one has a different engine than the other, maybe one has different tires. Do
I care that they aren’t identical? No, because I can use either car without
knowing all the minute differences between the two. I can call both of these
Toyotas a car.
The power of abstraction is that we can use components without knowing

all the details of how they work. That makes it possible to build large systems
(or programs) without being overwhelmed by complexity.

1.4. WHAT IS DEBUGGING? 5

1.3.3 Big Idea 3: Modularity

Finally, we have modularity, which is a means of connecting the layers of ab-
straction. Large systems are built up from components called modules. The
interfaces between modules are designed so they can be put together in a mix
and match way, like Legos. For instance, pieces of existing code can be used as
building blocks for much larger, complex pieces of code.

1.4 What is debugging?

Programming is a complex process, and since it is done by human beings, it often
leads to errors. For whimsical reasons, programming errors are called bugs and
the process of tracking them down and correcting them is called debugging.

There are a few different kinds of errors that can occur in a program, and it
is useful to distinguish between them in order to track them down more quickly.

1.4.1 Compile-time errors

The compiler can only translate a program if the program is syntactically cor-
rect; otherwise, the compilation fails and you will not be able to run your
program. Syntax refers to the structure of your program and the rules about
that structure.
For example, in English, a sentence must begin with a capital letter and end

with a period. this sentence contains a syntax error. So does this one
For most readers, a few syntax errors are not a significant problem, which is

why we can read the poetry of e e cummings without spewing error messages.
Compilers are not so forgiving. If there is a single syntax error anywhere in

your program, the compiler will print an error message and quit, and you will
not be able to run your program.

To make matters worse, there are more syntax rules in Java than there
are in English, and the error messages you get from the compiler are often
not very helpful. During the first few weeks of your programming career, you
will probably spend a lot of time tracking down syntax errors. As you gain
experience, though, you will make fewer errors and find them faster.

1.4.2 Run-time errors

The second type of error is a run-time error, so-called because the error does
not appear until you run the program. In Java, run-time errors occur when the
interpreter is running the byte code and something goes wrong.
The good news for now is that Java tends to be a safe language, which

means that run-time errors are rare, especially for the simple sorts of programs
we will be writing for the next few weeks.

Later on in the semester, you will probably start to see more run-time errors,
especially when we start talking about objects and references (Chapter 8).

6 CHAPTER 1. THE WAY OF THE PROGRAM

In Java, run-time errors are called exceptions, and in most environments
they appear as windows or dialog boxes that contain information about what
happened and what the program was doing when it happened. This information
is useful for debugging.

1.4.3 Logic errors and semantics

The third type of error is the logical or semantic error. If there is a logical
error in your program, it will compile and run successfully, in the sense that
the computer will not generate any error messages, but it will not do the right
thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted
to write. The meaning of the program (its semantics) is wrong. Identifying
logical errors can be tricky, since it requires you to work backwards by looking
at the output of the program and trying to figure out what it is doing.

1.4.4 Experimental debugging

One of the most important skills you will acquire in this class is debugging.
Although it can be frustrating, debugging is one of the most intellectually rich,
challenging, and interesting parts of programming.

In some ways debugging is like detective work. You are confronted with
clues and you have to infer the processes and events that lead to the results you
see.

Debugging is also like an experimental science. Once you have an idea what
is going wrong, you modify your program and try again. If your hypothesis
was correct, then you can predict the result of the modification, and you take
a step closer to a working program. If your hypothesis was wrong, you have to
come up with a new one. As Sherlock Holmes pointed out, “When you have
eliminated the impossible, whatever remains, however improbable, must be the
truth.” (from A. Conan Doyle’s The Sign of Four).

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does what
you want. The idea is that you should always start with a working program
that does something, and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines
of code, but it started out as a simple program Linus Torvalds used to explore
the Intel 80386 chip. According to Larry Greenfield, “One of Linus’s earlier
projects was a program that would switch between printing AAAA and BBBB.
This later evolved to Linux” (from The Linux Users’ Guide Beta Version 1).

In later chapters I will make more suggestions about debugging and other
programming practices.

1.5. FORMAL AND NATURAL LANGUAGES 7

1.5 Formal and natural languages

Natural languages are the languages that people speak, like English, Spanish,
and French. They were not designed by people (although people try to impose
some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific
applications. For example, the notation that mathematicians use is a formal
language that is particularly good at denoting relationships among numbers and
symbols. Chemists use a formal language to represent the chemical structure of
molecules. And most importantly:

Programming languages are formal languages that have
been designed to express computations.

As I mentioned before, formal languages tend to have strict rules about
syntax. For example, 3+3 = 6 is a syntactically correct mathematical statement,
but 3 = +6$ is not. Also, H2O is a syntactically correct chemical name, but

2Zz is not.
Syntax rules come in two flavors, pertaining to tokens and structure. Tokens

are the basic elements of the language, like words and numbers and chemical
elements. One of the problems with 3=+6$ is that $ is not a legal token in
mathematics (at least as far as I know). Similarly, 2Zz is not legal because
there is no element with the abbreviation Zz.
The second type of syntax error pertains to the structure of a statement;

that is, the way the tokens are arranged. The statement 3=+6$ is structurally
illegal, because you can’t have a plus sign immediately after an equals sign.
Similarly, molecular formulas have to have subscripts after the element name,
not before.
When you read a sentence in English or a statement in a formal language,

you have to figure out what the structure of the sentence is (although in a
natural language you do this unconsciously). This process is called parsing.
For example, when you hear the sentence, “The other shoe fell,” you under-

stand that “the other shoe” is the subject and “fell” is the verb. Once you have
parsed a sentence, you can figure out what it means, that is, the semantics of
the sentence. Assuming that you know what a shoe is, and what it means to
fall, you will understand the general implication of this sentence.
Although formal and natural languages have many features in common—

tokens, structure, syntax and semantics—there are many differences.

ambiguity: Natural languages are full of ambiguity, which people deal with
by using contextual clues and other information. Formal languages are
designed to be nearly or completely unambiguous, which means that any
statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstand-
ings, natural languages employ lots of redundancy. As a result, they are
often verbose. Formal languages are less redundant and more concise.

8 CHAPTER 1. THE WAY OF THE PROGRAM

literalness: Natural languages are full of idiom and metaphor. If I say, “The
other shoe fell,” there is probably no shoe and nothing falling. Formal
languages mean exactly what they say.

People who grow up speaking a natural language (everyone) often have a
hard time adjusting to formal languages. In some ways the difference between
formal and natural language is like the difference between poetry and prose, but
more so:

Poetry: Words are used for their sounds as well as for their meaning, and the
whole poem together creates an effect or emotional response. Ambiguity
is not only common but often deliberate.

Prose: The literal meaning of words is more important and the structure con-
tributes more meaning. Prose is more amenable to analysis than poetry,
but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal,
and can be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal lan-
guages). First, remember that formal languages are much more dense than
natural languages, so it takes longer to read them. Also, the structure is very
important, so it is usually not a good idea to read from top to bottom, left to
right. Instead, learn to parse the program in your head, identifying the tokens
and interpreting the structure. Finally, remember that the details matter. Lit-
tle things like spelling errors and bad punctuation, which you can get away with
in natural languages, can make a big difference in a formal language.

1.6 Glossary

problem-solving: The process of formulating a problem, finding a solution,
and expressing the solution.

high-level language: A programming language like Java that is designed to
be easy for humans to read and write.

low-level language: A programming language that is designed to be easy for
a computer to execute. Also called “machine language” or “assembly
language.”

formal language: Any of the languages people have designed for specific pur-
poses, like representing mathematical ideas or computer programs. All
programming languages are formal languages.

natural language: Any of the languages people speak that have evolved nat-
urally.

1.6. GLOSSARY 9

portability: A property of a program that can run on more than one kind of
computer.

interpret: To execute a program in a high-level language by translating it one
line at a time.

compile: To translate a program in a high-level language into a low-level lan-
guage, all at once, in preparation for later execution.

source code: A program in a high-level language, before being compiled.

object code: The output of the compiler, after translating the program.

executable: Another name for object code that is ready to be executed.

byte code: A special kind of object code used for Java programs. Byte code is
similar to a low-level language, but it is portable, like a high-level language.

algorithm: A general process for solving a category of problems.

bug: An error in a program.

syntax: The structure of a program.

semantics: The meaning of a program.

parse: To examine a program and analyze the syntactic structure.

token: One of the basic elements, like a word or symbol, that make up the
syntactic structure of a program.

syntax error: An error in a program that makes it impossible to parse (and
therefore impossible to compile).

exception: An error in a program that makes it fail at run-time. Also called
a run-time error.

logical error: An error in a program that makes it do something other than
what the programmer intended.

debugging: The process of finding and removing any of the three kinds of
errors.

10 CHAPTER 1. THE WAY OF THE PROGRAM

Chapter 2

Object Oriented
Programming

2.1 Buggles

Java is an object-oriented language, which means that programs construct and
manipulate “objects” inside the computer that (usually) represent objects in
the real world. More specifically, the objects perform computations by passing
messages to each other.

To start learning about Java and object oriented programming, we will use
Buggles. Buggles are Java objects that live in Buggleworld, which is another
Java object. Buggles are represented on the screen as icoscoles triangles; Bug-
gleworld is represented as a grid of squares. Buggles can move around in Bug-
gleWorld, they can paint in BuggleWorld, they can change direction, and they
can drop and eat bagels.

Buggles and BuggleWorld are not part of the Java language. They are part
of a program written by Franklyn Turbak based on Turtle graphics, part of the
Logo programming language.

2.2 A Buggle is born

Here is the first line of Java code we will see. It creates a new Buggle using the
new operator:

Buggle becky = new Buggle();

A line of code like this that performs an action is called a statement. This one
is an assignment statement because it assigns a value to the name becky.

The left side of the assignment is a declaration. It declares that the name
becky will refer to an object of type Buggle. The right side of the assignment

11

12 CHAPTER 2. OBJECT ORIENTED PROGRAMMING

creates the new object. Once this statement completes, we can use the name
becky to refer to the new object.

In lab you will learn how to put this statement into a Java program, compile
it, and execute it. When you do, you will see a graphical representation of
BuggleWorld with a red icosceles triangle in the lower left corner. That’s becky.
She looks a little like this:

Every Buggle in BuggleWorld starts out looking like this, but you can change
their properties by sending them messages. The properties are called instance
variables (in some Java documentation they are also called fields). For Bug-
gles, the instance variables are position, heading, color and brush state.

position: The location of the Buggle in BuggleWorld, specified in coordinates
on an (x,y) axis. New Buggles are initially in the lower left corner, with
coordinates (1,1). Coordinates increase to the right along the x axis and
up along the y axis.

heading: The compass direction the Buggle is facing, which is always one of
the values NORTH, SOUTH, EAST and WEST. Buggles are born facing
EAST.

color: What color the Buggle is, and what color trail it leaves. Buggles are
born red.

brushDown: Whether or not the Buggle’s brush is down (in the painting posi-
tion). When the value of this variable is true the Buggle leaves a colored
trail. When false it doesn’t. Buggles are born with their brushes down.

2.3 Changing instance variables

You can change the state of a Buggle by sending it a message. The messages you
can send a Buggle include forward, backward, left, and right. The following
statements move becky around.

2.4. METHODS WITH ARGUMENTS 13

becky.forward();

becky.forward();

becky.left();

These statements are called method invocations. When they execute, they
send messages to becky, in this case the messages forward, forward and left.
becky executes these instructions one at a time, in order.
The result is that the graphical representation of becky moves and her in-

stance variables change. Her position is now (3,1) and her heading is now
NORTH.

Notice that this movement also has a side-effect. Since becky’s brush was
down when she moved, she left a stripe of (red) paint in her path.
Other Buggle methods include brushUp, brushDown, setPosition, and

setHeading.

2.4 Methods with arguments

Some methods require additional information when they are invoked, informa-
tion that controls how the action is performed.
For example, when you invoke the setColor method, you have to provide a

Color object:

becky.setColor (Color.blue);

The additional information you provide is called an argument. In this case
the argument is one of the built-in colors, Color.blue. This has the effect of
making becky blue. The next time she moves, she will leave a blue trail.
Other built-in colors include

black blue cyan darkGray gray lightGray

magenta orange pink red white yellow

There is an alternate form of the methods forward and backward that takes an
integer as an argument. For example,

14 CHAPTER 2. OBJECT ORIENTED PROGRAMMING

becky.forward (5);

Moves becky forward five spaces (and paints a stripe along the way, if her brush
is down). As an exercise, draw what you think BuggleWorld will look like after
these statements execute, and then try it out.

2.5 Variable declaration

A variable is a name that refers to an object (like a Buggle) or a value (like
the number 3). A variable declaration creates a new variable and declares what
type it is. So far the only types we have seen are Buggle and Color, but there
are other built-in types, like int and Point, and other types in BuggleWorld,
like Direction.
The simplest form of a declaration looks like this:

Type name;

where Type is the type of the variable and name is the name. The semi-colon at
the end is mandatory, like the period at the end of a sentence
A variable declaration all by itself doesn’t assign a value to the new variable,

so it is very common to combine it with an assignment, like this:

Type name = value;

Here are a few more examples:

int n = 3;

Color myFavorite = Color.green;

By convention, variable names always begin with lowercase letters. If a variable
name contains multiple words, the first letter of each word (except the first) is
capitalized. Variable names can be any length, and may also include numbers
(but not first).

2.6 Classes

A class is a category. For example, the Buggle class is the category that contains
all Buggle objects. The Color class, you will not be surprised to hear, contains
all the Color objects.
Conversely, every object belongs to a class, which is why objects are also

called instances—each one is a specific instance of its general class.
Each class specifies the set of methods that can be applied to the objects in

that class. The methods we have seen that apply to Buggles are all defined in
the Buggle class, which is in a file named Buggle.java.
For every class there is a corresponding type, so when you create Buggle

objects you assign them to variables with type Buggle. When you create Color
objects, you will not be surprised to hear, you assign them to variables with
type Color.

2.7. CONSTANTS 15

2.7 Constants

Values like 3 and Color.green are constants, basic values that never change.
Like variables and objects, constants also have types. Numbers like 3 have the
type int, short for integer. Color.green has type Color.
In order to assign a constant to a variable, the constant and the variable

have to have the same type. So in the previous examples, we can assign 3 to an
int and Color.green to a Color, but not the other way around.
Some constants are associated with a class, as the color green is associated

with the Color class. To use those constants, you have to specify both the name
of the class and the name of the constant.
As another example, the Direction class contains the constants EAST, WEST,

NORTH and SOUTH. You can pass them as arguments to setHeading:

becky.setHeading (Direction.EAST);

This statement tells becky to face east.
Once you assign a value to a variable, you can use the variable anywhere

you would use the value. For example:

int n = 3;

becky.forward (n);

Direction d = Direction.EAST;

becky.setDirection (d);

2.8 Expressions

An expression is a collection of variables and constants that can be evaluated
to yield a value. You are probably familiar with mathematical expressions like
7 + 3, which has the value 10. You have probably also seen expressions with
variables, like 7 + n, which also has the value 10, if the value of n happens to
be 3.
Arithmetic symbols like + are called operators because they perform math-

ematical operations. Java provides operators for addition +, subtraction -,
multiplication * and division /. Division is sometimes confusing because when
you divide integers, Java performs integer division, which always rounds down
to the nearest integer. So 13/4 is 3, and 99/100 is 0.
It is important to remember the difference between an expression and a state-

ment. A statement is a Java command that does something. So far we have seen
three kinds of statement: declarations, assignments and method invocations.
An expression can appear on the right-hand side of an assignment, and it

can appear as an argument for a method invocation, but an expression all by
itself is not a statement. For example, n + 5; is not a legal statement all by
itself.
Also, the left side of an assignment has to be the name of a variable. It can’t

be an expression. So

16 CHAPTER 2. OBJECT ORIENTED PROGRAMMING

n + 5 = 7;

is not legal. This example demonstrates something very important:

An assignment statement is not a statement of equality.

It is an (unfortunate) coincidence that the assignment operator, =, looks a lot
like the equality symbol used in mathematics. But it is not the same thing!
The best way to think about an assignment is “a statement that evaluates the
expression on the right and assigns the result to the variable on the left.”

2.9 Constructors

For every class there is a constructor that creates new instances of that class.
To invoke the constructor, use the new operator and the name of the class. We
have already seen one example:

Buggle becky = new Buggle();

Here’s how to create a Point object that represents the location (4, 2):

Point p = new Point (4, 2);

Notice that the names of classes begin with upper-case letters. The types that
begin with lower-case letters are not classes, and they obey some different syntax
rules. For example, you cannot use the new command to create an int object.
You can use a Point object as an argument to the setPosition method.

becky.setPosition (p);

This invocation causes becky to leap to the position (4, 2) from anywhere in
BuggleWorld.

2.10 Sending messages

When you invoke a method on an object, you send a message to the object
telling it what to do. The general form of a method invocation is

object.method (arguments);

where object is the name of the object, method is the name of the method,
and arguments is a list of arguments that can be arbitrarily long, or empty. We
have already seen an example of an empty argument list:

becky.forward ();

And a “list” with a single argument:

2.11. VOID AND FRUITFUL METHODS 17

becky.forward (5);

When a method takes more than one argument, the arguments are separated
by commas. For example, one way to create a new Color object is to specify
how much red, green, and blue light to mix, on a scale of 0–255:

Color purple = new Color (150, 0, 210);

In general, the arguments you provide have to match the arguments the method
is expecting to receive. For example, if you invoke forward like this:

becky.forward (1, 2);

The compiler will complain, because it was expecting either one integer argu-
ment or no arguments; two arguments is illegal.

2.11 Void and fruitful methods

The methods we have seen so far make Buggles do things, and we can see the
results in BuggleWorld. But invoking these methods does not produce a value
as a result.
Methods that produce values are called fruitful; methods that don’t are

called void.
Invoking a void method is a statement all by itself, but invoking a fruitful

method is just an expression. You cannot use a void method as an expression,
so

int n = becky.forward ();

is illegal. If you try it, you will get a compile-time error.
If you use a fruitful method invocation as a statement, you won’t get an

error (unfortunately), but the statement doesn’t do anything. For example,

becky.getColor ();

gets becky’s color, but it doesn’t do anything with the result! It is common
(and much more useful) to put fruitful method invocations on the right-hand
side of an assignment.

Color c = becky.getColor ();

This statement takes the result from getColor and assigns it to c. Then we
can use c as an argument to another method:

bobby.setColor (c);

The result is that bobby is transformed to whatever color becky was.
In this case, we call c a temporary variable because we used it to hold a

value temporarily while we passed it from one object to another.
It is also possible to cut out the middleman:

18 CHAPTER 2. OBJECT ORIENTED PROGRAMMING

bobby.setColor (becky.getColor ());

This is an example of a nested method invocation, since getColor is nested
inside setColor. Statements like this are evaluated from the inside (innermost
parentheses) out. So, we invoke getColor first and then pass the result as an
argument to setColor. The effect is the same as the longer version.

2.12 Comments

This is the first piece of code we have seen that is complicated enough to deserve
a comment. A comment is a line of English that you can include in a program
to explain what the program does or how it works. Comments don’t affect what
the program does; they just make it easier to read:

// give bobby becky’s color

bobby.setColor (becky.getColor ());

Comments begin with two forward slashes (//, not \\) and go until the end of
the line.

// comments usually get a line to themselves

// but occasionally you might want to tack one onto

bobby.setColor (becky.getColor ()); // the end of a statement

2.13 More nesting

I’ve said this before, but it’s so important I’m going to say it again:

Invoking a void method is a statement all by itself, but invoking
a fruitful method is just an expression. You have to do something
with the result.

As we have already seen, you can use a fruitful method invocation anywhere
you can use an expression: on the right side of an assignment, or as an argument.
You can also invoke a method on the result of a previous invocation:

Color c = bobby.getColor().darker();

The darker method belongs to the Color class. If you invoke it on a Color
object, it returns a new Color object that is a darker version of the original.
Note that the original Color does not change!
So this statement gets bobby’s current color and creates a new color that

is a little darker. The result is assigned to c. This statement has no effect on
bobby.
If we want to change bobby’s color we have to invoke setColor:

bobby.setColor (c);

2.14. CONTRACTS 19

Again, you can eliminate the temporary variable and make the statement even
more complicated!

bobby.setColor (bobby.getColor().darker());

If you read this statement from left to right, you are likely to be confused. It is
better to read it in the order it will be evaluated, from the inside out.

2.14 Contracts

Every class has a contract that specifies what methods it implements and what
constants it provides.
For example, the Buggle contract contains a list of methods you can invoke

on Buggles, including two forms of forward:

public void forward ()

Moves this buggle forward one step (in the direction of its current
heading). Complains if the buggle is facing a wall.

public void forward (int n)

Moves this buggle forward n steps. If the buggle encounters a wall
along the way, it will stop and complain.

Just to make things confusing, the way methods are presented in the contract
is different from the way you invoke them. But you can read the contracts the
same way you read code.
The first line says that forward is a public void method that takes no ar-

guments. public means that you can invoke this method from other classes,
as opposed to private methods, which can only be invoked from other Buggle
methods. void means that this method does not return a value.
The second form of forward is similar except that it takes a single argument,

named n, that has type int. It is illegal to invoke forward with any kind of
argument other than int or with more than one argument.
By the way, it might be entertaining to know that the argument is called n,

and it is convenient for the documentation to refer to it (“n steps”), but when
you invoke the method, you don’t have to worry about the name. You can pass
any integer expression as an argument:

becky.forward (5);

int numberOfSteps = 13;

becky.forward (numberOfSteps);

becky.forward (numberOfSteps + 5);

These are all legal. The argument in the first invocation is an integer constant,
the second is a variable with type int and the third is an expression that, when
evaluated, yields an integer.
Here is the documentation for getColor:

20 CHAPTER 2. OBJECT ORIENTED PROGRAMMING

public Color getColor ()

Returns the color of this buggle.

Instead of the word void, we see the word Color before the name of the
method. That means that this is a fruitful method that returns an object of
type Color. It takes no arguments.
All of the methods in the Buggle class are instance methods, which means

that you have to invoke them on an instance of the class, i.e. a Buggle. Later
we will see class methods, which don’t require an instance.

2.15 Glossary

statement: A line of a Java program. The three kinds of statement we have
seen are declarations, assignments and method invocations.

declaration: A statement that creates a new variable and declares its type.

assignment: A statement that gives a value to a variable.

method invocation: A statement that invokes a method, which has the effect
of sending a message to an object.

object: A value in a program that can recieve messages and perform actions.

instance: Another name for an object, the term “instance” emphasizes the
notion that all objects are an instance of a category.

class: A category of objects. A class defines the set of operations (methods)
that can be invoked on its instances.

constructor: A special method that creates new objects. It is invoked using
the new operator, not the usual method invocation syntax.

operator: A basic operation, including arithmetic operators as well as new and
the assignment operator, =.

variable: A named location that can contain a value.

value: One of the basic units programs manipulate and compute.

type: Variables, values and objects all belong to types. For every class, there
is a corresponding type.

instance variable: A variable inside an object that contains information about
the state of the object.

temporary variable: A variable used to hold a value temporarily.

argument: An expression that you provide when you invoke a method. The
value of the argument is passed to the method.

2.15. GLOSSARY 21

return value: The result of invoking a fruitful method.

method: One of the operations an object can perform, or one of the messages
that can be sent to an object.

void method: A method that does not have a return value. Invoking a void
method is a statement.

fruitful method: A method that has a return value. Invoking a fruitful
method is an expression.

instance method: A method that is invoked on an object, which has the effect
of passing a message to the object.

expression: A collection of variables, values, operators and method invocations
that can be evaluated to yield a value.

comment: A line of description, in English, that is included in a program to
explain how it works.

22 CHAPTER 2. OBJECT ORIENTED PROGRAMMING

Chapter 3

Methods

3.1 Debugging

There are two stages of debugging: getting the program to compile and run, and
getting the program to do the right thing. The first stage is mostly a problem
with syntax, and the hardest part is usually figuring out what the error messages
mean. The second stage is a problem with semantics; the program you wrote
does not mean what you wanted it to mean.
At this point, the first step is to figure out what the program is doing. A

useful command for that is System.out.println. As debugging tools go, it’s a
little clumsy, but it can be a big help.
In the simplest form, the print statement looks like this:

System.out.println ("Hello");

Actually, calling it a print statement is misleading, since it doesn’t print any-
thing on paper. What it does, in most environments, is pop up a window, called
a console, where it displays whatever you tell it to display. In this case, we
told it to display the word Hello.
The quotation marks are necessary to indicate that this is a String, which

is yet another Java type. If you leave out the quotes, Java thinks Hello is the
name of a variable, and it complains if there isn’t a variable by that name.
On the other hand, if a variable does exist, println displays its current

value:

int x = 5;

System.out.println (x);

The output of this code is 5.
While you are debugging your code, you can add print statements almost

anywhere. When you are done, you might want to remove them, to avoid clutter.
If you think you might need them later, you can comment them out.

23

24 CHAPTER 3. METHODS

int x = 5;

//System.out.println (x);

The phrases that appear in quotation marks are called strings, because
they are made up of a sequence (string) of letters. Actually, strings can con-
tain any combination of letters, numbers, punctuation marks, and other special
characters.

println is short for “print line,” because after each line it adds a special
character, called a newline, that causes the cursor to move to the next line of
the console. The next time println is invoked, the new text appears on the
next line.
Often it is useful to display the output from multiple print statements all on

one line. You can do this with the print command:

System.out.print ("Goodbye, ");

System.out.println ("cruel world!");

In this case the output appears on a single line as Goodbye, cruel world!.
Notice that there is a space between the word “Goodbye” and the second quo-
tation mark. This space appears in the output, so it affects the behavior of the
program.

3.2 Concatenation

Earlier I said that the mathematical operators only work with numbers, but
that is not completely true. The + operator works with Strings, although it
does not do exactly what you might expect.
For Strings, the + operator represents concatenation, which means joining

up the two operands by linking them end-to-end. So "Hello, " + "world."

yields the string "Hello, world." and fred + "ism" adds the suffix ism to the
end of whatever fred is, which is often handy for naming new forms of bigotry.
Concatenation is handy for combining Strings and other values inside a print

statement:

int bananas = 17;

System.out.println ("Yes, the number of bananas is " + bananas);

You might wonder how Java deals with an expression like "Yes, the number

of bananas is " + bananas, since one of the operands is a String and the
other is a int. Well, in this case Java is smart on our behalf; it automatically
converts the int to a String before it concatenates.
This kind of feature is an example of a common problem in designing a

programming language, which is that there is a conflict between formalism,
which is the requirement that formal languages should have simple rules with
few exceptions, and convenience, which is the requirement that programming
languages be easy to use in practice.

3.3. BUGGLEWORLD 25

More often than not, convenience wins, which is usually good for expert
programmers (who are spared from rigorous but unwieldy formalism), but bad
for beginning programmers, who are often baffled by the complexity of the rules
and the number of exceptions. In this book I have tried to simplify things by
emphasizing the rules and omitting many of the exceptions.

Nevertheless, it is handy to know that whenever you try to “add” two ex-
pressions, if one of them is a String, then Java will convert the other to a
String and then perform string concatenation. What do you think happens if
you perform an operation between an integer and a floating-point value?

3.3 BuggleWorld

While we have been playing with Buggles we haven’t done much with Buggle-
Worlds. The BuggleWorld class defines the methods that BuggleWorlds can
execute.

One of these methods is the constructor. You can create a new BuggleWorld
in the usual way:

BuggleWorld world = new BuggleWorld ();

In the programs you have used so far you have not had to create your own
BuggleWorlds; we gave you code to do that.

The only other method BuggleWorlds can execute is run. Try executing it,
either by invoking it directly, or by using the GUI (graphical user interface). In
its current form, it doesn’t do much. In fact, it does nothing.

To fix that, we have to extend the existing BuggleWorld class and create
a new class, which we will call MyBuggleWorld. The new class is just like the
old class except that it overrides the old run method and replaces it with
something more interesting. Here’s how it looks in Java.

public class MyBuggleWorld extends BuggleWorld{

public void run() {

Buggle becky = new Buggle();

becky.setPosition (new Point (4,2));

}

}

The first line says that we are creating a new class named MyBuggleWorld that
is based on the existing class BuggleWorld. The second line says that we are
defining a new method, named run, that the new class will be able to execute.
It is a void method that takes no arguments.

The code inside run is nothing new. It creates a Buggle and moves it to the
point (4, 2).

26 CHAPTER 3. METHODS

3.4 The Java Execution Model

The Java Execution Model (JEM) is a way to visualize what is going on
when a piece of code executes. It is useful for debugging and it provides a visual
aid to otherwise abstract concepts. If you are ever in doubt about what a piece
of code does, take out a piece of paper and draw out the JEM.

The JEM is divided into two regions: Object Land, where objects live, and
Execution Land, where the code is executed.

3.5 Execution Land

Execution Land displays the evolution of a piece of code as it executes. It is
inhabited by execution frames, one for each method that is currently running.

Every execution frame has two parts, the set of variables used in the method,
and the sequence of statements that make up the body of the method.

The following figure shows a JEM with a single execution frame. The name
of the method, run, is outside the frame. Inside the frame are variables named
this and becky. The code is the body of run.

position

heading

brushDown true

color

x 4

2y

this becky

Buggle becky = new Buggle ();

becky.setPosition (new Point (4, 2));

run

Execution Land

unknown
instance
variables

unknown
instance
variables

unknown
instance
variables

Object Land

Buggle Point

Direction

Color

MyBuggleWorld

The variable named this is a special variable that is created by Java; you
don’t have to declare it. When you send a message to an object, the object uses
this to refer to itself. In this example, this refers to the MyBuggleWorld that
received the run message.

3.6. OBJECT LAND 27

3.6 Object Land

In Object Land, each object is represented as a group of instance variables that
describe the object at a specific point in time.
This JEM shows five objects: a MyBuggleWorld object, a Buggle, a Point,

a Color and a Direction. Each is labelled with its type.
For some objects we know what the instance variables are and we can show

them in the JEM. For other objects the internal state is opaque.
There are two kinds of value a variable might hold, primitive values and

object references. Integers are primitive types, and so are the truth values true
and false. When a variable contains a primitive value, we write the value
inside a box and write the name of the variable outside. The instance variables
brushDown, x and y are examples.
Object references are, um, references to objects. In the JEM they are rep-

resented by a dot and an arrow pointing to an object.

3.7 Writing your own methods

Take a look at the following code and figure out what it does. As an exercise,
draw a picture of what BuggleWorld looks like after the program runs.

public class MyBuggleWorld extends BuggleWorld{

public void run() {

Buggle becky = new Buggle ();

becky.setPosition (new Point (4,2));

Buggle bobby = new Buggle ();

bobby.setColor (Color.blue);

// becky draws a box 3 steps on each side

becky.forward (2);

becky.left ();

becky.forward (2);

becky.left ();

becky.forward (2);

becky.left ();

becky.forward (2);

becky.left ();

// bobby draws a box 3 steps on each side

bobby.forward (2);

bobby.left ();

bobby.forward (2);

bobby.left ();

bobby.forward (2);

bobby.left ();

28 CHAPTER 3. METHODS

bobby.forward (2);

bobby.left ();

}

}

Notice that becky and bobby execute pretty much the same code. Wouldn’t
it be more efficient to capture this pattern so that we could simply tell the
Buggles to draw a box? Of course!
To do that, we have to create a new kind of Buggle that can execute a

new method, called box. We can extend Buggles the same way we extended
BuggleWorld:

class Box2Buggle extends Buggle {

public void box () {

this.forward (2);

this.left ();

this.forward (2);

this.left ();

this.forward (2);

this.left ();

this.forward (2);

this.left ();

}

}

The new class is called Box2Buggle. A Box2Buggle object can do everything
a Buggle can, but it can also execute the box method, which regular old Buggles
can’t.

When we create becky and bobby we have to use the constructor for the
Box2Buggle class, and assign the result to a variable with type Box2Buggle:

public class Box2World extends BuggleWorld {

public void run () {

Box2Buggle becky = new Box2Buggle ();

becky.setPosition (new Point (4,2));

Box2Buggle bobby = new Box2Buggle ();

bobby.setColor (Color.blue);

becky.box ();

bobby.box ();

}

}

Here is what the JEM looks like when we invoke box on becky:

3.8. WRITING METHODS WITH PARAMETERS 29

unknown

state variables

this becky

position

heading

brushDown true

color

Box2Buggle

position

heading

brushDown true

color

Box2Buggle

Object Land

Execution Land

run

Box2BuggleWorld

this.forward (2);
this.left();
this.forward (2);
this.left();
this.forward (2);

this.forward (2);
this.left();

this.left();

box

Box2Buggle becky = new Box2Buggle ();
becky.setPosition (new Point (4, 2));
Box2Buggle bobby = new Box2Buggle ();
bobby.setColor (Color.blue);

becky.box();
bobby.box();

thisbobby

For the object references inside the Buggle objects, I just drew dots and
omitted the objects they refer to.
Notice that there are now two execution frames, one for run and one for

box. Inside run I added a dot that shows which line of the program is currently
excecuting. In this JEM, we are in the middle of executing box.
The arrow points from the method invocation to the execution frame of the

method. Inside box, there is only one variable, this. As always, this refers to
the object that received the message, which is becky.
This is the first case we have seen where two variables refer to the same

object. This situation is called aliasing because becky is going by an alias.
Inside run, she is known as becky, but inside box she goes by the nickname
this. Of course, anything we do to this is going to affect becky.
This example demonstrates one of the benefits of methods. By writing a

box() method, we avoided writing the same code twice. Imagine how much
code we would save if there were 10 Buggles making boxes! Methods also make
code more readable, less error prone, and easier to reuse.

3.8 Writing methods with parameters

In the previous example we wrote a method, box, that made a Box2Buggle draw
a box 3 units on a side. But, what if we wanted the Buggle to draw a box with
some other size, say 6? Would we have to write a whole new method? Not if
we use parameters. Parameters are variables that store the arguments you
provide when you invoke a method.
Here is a version of box that can take the size of the box as a parameter.

class Box2Buggle extends Buggle {

30 CHAPTER 3. METHODS

public void box (int n) {

forward(n-1);

left();

forward(n-1);

left();

forward(n-1);

left();

forward(n-1);

left();

}

}

The first thing you might notice about this version of box is that I left out this.
When you invoke one method inside another, Java understands that you want
to invoke it on the current object.

The next thing you should have noticed is the variable declaration int n,
which is the parameter list. It says that this version of box expects a single
argument with type int.

If we try to invoke box with a non-integer expression as an argument, or
more than one argument, we get a compile-time error. As usual, you should try
it out so you see what the error message looks like.

Now when we invoke box we have the option of including an argument:

public class Box2World extends BuggleWorld {

public void run () {

Box2Buggle becky = new Box2Buggle ();

becky.setPosition(new Point(4,2));

Box2Buggle bobby = new Box2Buggle();

bobby.setColor(Color.blue);

becky.box(5);

bobby.box(3);

}

}

As an exercise, draw a picture of what BuggleWorld will look like after this
code runs.

Here is what the JEM looks like while bobby is executing box:

3.9. LOCAL VARIABLES 31

unknown

state variables

this becky

position

heading

brushDown true

color

Box2Buggle

position

heading

brushDown true

color

Box2Buggle

Object Land

Execution Land

run

Box2BuggleWorld

this.left();

this.left();

this.left();

this.left();

box

Box2Buggle becky = new Box2Buggle ();
becky.setPosition (new Point (4, 2));
Box2Buggle bobby = new Box2Buggle ();
bobby.setColor (Color.blue);

thisbobby

this.forward (n−1);

this.forward (n−1);

this.forward (n−1);

this.forward (n−1);
becky.box(5);
bobby.box(3);

n 3

We added the parameter n to the execution frame for box. The first time
box executes, this refers to becky and n has the value 5. The second time,
shown in the JEM, this refers to bobby and n is 3.

3.9 Local variables

In this example, the variable n only exists inside the method box. You cannot
refer to it from run. Similarly, the variables becky and bobby only exist in run

and you cannot refer to them from box.

Variables like these are called local variables. There are other variables,
called global variables, that you can refer to from any method, but we will
not see them for a while.

When a method completes, its execution frame disappears along with its
local variables. Thus, each method is carefully isolated from the rest of the
program. The only information that comes into the method is the parameter
list; the only information that goes out is the return value. This isolation is one
form of modularity. If methods are modular, it makes it easier to combine
them and understand how they interact. As we write more complex programs,
the benefits of modularity will become clearer.

3.10 Flow of execution

Flow of execution refers to the order statements are executed, and the order
expressions are evaluated. In general, the body of a method is executed one
statement at a time, starting at the top and proceeding until the end.

32 CHAPTER 3. METHODS

Within each statement, expressions are evaluated according to the rules of
precedence. We have already talked about the order of evaluation for arithmetic
expressions, and we have seen nested method invocations like

bobby.setColor (bobby.getColor().darker());

Expressions involving method invocations are evaluated from the innermost
parentheses out, and from left to right.
When you invoke one of the built-in methods, you don’t (and probably

shouldn’t) think about how the method does what it does. But when you are
invoking one of your own methods, it is tempting to think about the flow of
execution.
A method invocation is like a detour in the flow of execution. When the

method is invoked, Java creates a new execution frame and starts executing the
new method. At the same time it remembers where it is in the original frame.
Again, the statements in the new method are executed one at a time, from top
to bottom. When the method completes, the flow of execution returns to the
original frame and picks up where it left off.

3.11 Picture objects

The Picture class defines a new type called Picture and a set of methods you
can invoke on Picture objects. The Picture contract is in the Appendix.
Most of the methods that operate on Pictures are fruitful. For example,

clockwise90 takes a Picture as a parameter and returns a new Picture that is
similar to the original, but rotated 90 degrees clockwise.
Assume that we have a Picture object named original. We can create a

new object named rotated:

Picture rotated = clockwise90 (original);

Other methods flip pictures and juxtapose pictures in various ways, but it is
worth empasizing that none of these methods modifies an existing picture in
any way. They only create new Pictures.

3.12 Writing fruitful methods

Just as we extended Buggle and BuggleWorld to add new methods, we can
extend Picture. The difference is that the Picture methods will be fruitful.
The following method takes four Pictures as parameters and returns a new

Picture that contains all four pictures in a two-by-two grid.

public Picture fourPics (Picture p1, Picture p2, Picture p3, Picture p4){

Picture row1 = beside (p1, p2);

Picture row2 = beside (p3, p4);

Picture grid = above (row1, row2);

3.13. GLOSSARY 33

return grid;

}

The first line assembles the first two pictures into a row. The second line does
the same with the last two pictures. The next line combines the rows into a
grid.
The last line is a return statement. When return is executed, the method

ends immediately and the flow of execution returns to the previous frame. For
fruitful methods, the return statement has to include an expression. This
expression gets evaluated and the result becomes the return value of the method.
Whoever invokes this method will get the object that grid refers to as

a return value. We can make this method more concise by eliminating the
temporary variables.

public Picture fourPics (Picture p1, Picture p2, Picture p3, Picture p4){

return above (beside (p1, p2), beside (p3, p4));

}

The expression after the return statement is more complicated, but the effect is
the same. Java evaluates the expression and returns the result.
When you declare a fruitful method, you have to declare the return type (in

this case Picture). The expression in the return statement has to be the same
type, otherwise Java reports a compile-time error. Try it out so you know what
the error message looks like.
As an exercise, write a method called fourSame that takes a Picture as a

parameter and that returns a new Picture with the original picture in all four
quadrants of a grid.

3.13 Glossary

print statement: An invocation of System.out.println or
System.out.print to display a value in the console window.

concatenate: To join two operands end-to-end.

console: A window that contains the text output of a program.

extend: Define a new class based on an existing class.

override: Write a new method for an extended class that replaces an existing
method from the original class.

Java Execution Model (JEM): A visual language for representing the state
of an executing Java program.

Object Land: The section of the JEM that represents objects.

Execution Land: The section of the JEM that represents methods as they
execute and their local variables.

34 CHAPTER 3. METHODS

local variables: A variable that is declared inside a method and that exists
only while the method is executing.

global variables: A variable that is declared outside all methods and that can
be accessed from any method.

parameters: The variables that are used by a method to store the values that
are passed in as arguments.

aliasing: The condition where more than one variable contains a reference to
the same object.

modularity: The desirable property of a method that is well isolated from
other methods.

return statement: A statement that terminates the current method and re-
turns control to the previous frame. Inside a fruitful method the return
statement determines the return value.

return type: The type of expression a method returns when it is invoked.

Chapter 4

Conditionals

4.1 Floating-point

There is only one problem with the integer arithmetic we have been using—no
fractions. The solution is floating-point numbers, which can represent fractions
as well as integers. In Java, the floating-point type is called double (short for
double-precision floating-point).
You can create floating-point variables and assign values to them using the

same syntax we used for the other types. For example:

double pi;

pi = 3.14159;

Of course, you can also declare the variable and assign a value at the same time:

int x = 1;

double pi = 3.14159;

Although doubles are useful, they are sometimes a source of confusion because
there seems to be an overlap between integers and floating-point numbers. For
example, if you have the value 1, is that an integer, a floating-point number, or
both?
Strictly speaking, Java distinguishes the integer value 1 from the floating-

point value 1.0, even though they seem to be the same number. They belong
to different types, and you are not allowed to make assignments between types.
For example, the following is illegal:

int x = 1.1;

because the variable on the left is an int and the value on the right is a double.
But it is easy to forget this rule, especially because there are places where Java
will automatically convert from one type to another. For example,

double y = 1;

35

36 CHAPTER 4. CONDITIONALS

should technically not be legal, but Java allows it by converting the int to a
double automatically. This leniency is convenient, but it can cause problems;
for example:

double y = 1 / 3;

You might expect the variable y to be given the value 0.333333, which is a legal
floating-point value, but in fact it will get the value 0.0. The reason is that the
expression on the right is the ratio of two integers, so Java does integer division,
which yields the integer value 0. Converted to floating-point, the result is 0.0.
One way to solve this problem (once you figure out what it is) is to make

the right-hand side a floating-point expression:

double y = 1.0 / 3.0;

This sets y to 0.333333, as expected.
All the operations we have seen so far—addition, subtraction, multiplica-

tion, and division—also work on floating-point values, although you might be
interested to know that the underlying mechanism is completely different. In
fact, most processors have special hardware just for performing floating-point
operations.

4.2 Converting from double to int

As I mentioned, Java converts ints to doubles automatically if necessary, be-
cause no information is lost in the translation. On the other hand, going from
a double to an int requires rounding off. Java doesn’t perform this operation
automatically, in order to make sure that you, as the programmer, are aware of
the loss of the fractional part of the number.
The simplest way to convert a floating-point value to an integer is to use a

typecast. Typecasting is so called because it allows you to take a value that
belongs to one type and “cast” it into another type (in the sense of molding or
reforming, not throwing).
The syntax for typecasting is ugly: you put the name of the type in paren-

theses and use it as an operator. For example,

int x = (int) 3.14159;

The (int) operator has the effect of converting what follows into an integer, so
x gets the value 3.
Typecasting takes precedence over arithmetic operations, so in the following

example, the value of pi gets converted to an integer first, and the result is 60,
not 62.

double pi = 3.14159;

int x = (int) Math.PI * 20.0;

4.3. MULTIPLE ASSIGNMENT 37

Converting to an integer always rounds down, even if the fraction part is
0.99999999.
These two properties (precedence and rounding) can make typecasting awk-

ward.

4.3 Multiple assignment

I haven’t said much about it, but it is legal in Java to make more than one
assignment to the same variable. The effect of the second assignment is to
replace the old value of the variable with a new value.

int fred = 5;

System.out.print (fred);

fred = 7;

System.out.println (fred);

The output of this program is 57, because the first time we print fred his value
is 5, and the second time his value is 7.
This kind of multiple assignment is the reason I described variables as

a container for values. When you assign a value to a variable, you change the
contents of the container, as shown in the figure:

fred

5

int fred = 5; fred = 7;

fred

5 7

When there are multiple assignments to a variable, it is especially important
to distinguish between an assignment statement and a statement of equality.
In mathematics, a statement of equality is true for all time. If a = b now,

then a will always equal b. In Java, an assignment statement can make two
variables equal, but they don’t have to stay that way!

int a = 5;

int b = a; // a and b are now equal

a = 3; // a and b are no longer equal

The third line changes the value of a but it does not change the value of b, and
so they are no longer equal.
Although multiple assignment is frequently useful, you should use it with

caution. If the values of variables are changing constantly in different parts of
the program, it can make the code difficult to read and debug.
When a program contains multiple assignments to the same variable, it is

tempting, out of habit, to declare the type of the variable every time. For
example,

38 CHAPTER 4. CONDITIONALS

int fred = 3;

// and then later ...

int fred = 5;

This code is illegal because it tries to declare (and create) the variable fred
twice. After the initial declaration, all subsequent assignments omit the variable
type.

4.4 Conditional execution

In order to write useful programs, we almost always need the ability to check
conditions and change the behavior of the program accordingly. Conditional
statements give us this ability. The simplest form is the if statement:

if (x > 0) {

System.out.println ("x is positive");

}

The expression in parentheses is called the condition. If it is true, then the
statements in brackets get executed. If the condition is not true, nothing hap-
pens.
The condition can contain any of the comparison operators:

x == y // x equals y

x != y // x is not equal to y

x > y // x is greater than y

x < y // x is less than y

x >= y // x is greater than or equal to y

x <= y // x is less than or equal to y

Although these operations are probably familiar to you, the syntax Java uses is
a little different from mathematical symbols like =, 6= and ≤. A common error
is to use a single = instead of a double ==. Remember that = is the assignment
operator, and == is a comparison operator. Also, there is no such thing as =<
or =>.
The two sides of a condition have to be the same type, so we can only compare

int to int and double to double. You cannot use the comparison operators
on objects, so there is no way to know which of two Buggles is greater.

4.5 Alternative execution

A second form of conditional execution is alternative execution in which there
are two possibilities, and the condition determines which one gets executed. The
syntax looks like:

4.6. CHAINED CONDITIONALS 39

if (x > 0) {

System.out.println ("x is positive");

} else {

System.out.println ("x is negative or zero");

}

If the condition is true, that means that x is positive, and this code prints a
message to that effect. If the condition is false, the second set of statements is
executed. Since the condition must be true or false, exactly one of the alterna-
tives will be executed.

4.6 Chained conditionals

Sometimes you want to check for a number of related conditions and choose one
of several actions. One way to do this is by chaining a series of ifs and elses:

if (x > 0) {

System.out.println ("x is positive");

} else if (x < 0) {

System.out.println ("x is negative");

} else {

System.out.println ("x is zero");

}

These chains can be as long as you want, although they can be difficult to read
if they get out of hand. One way to make them easier to read is to use standard
indentation, as demonstrated in these examples. If you keep all the statements
and squiggly-brackets lined up, you are less likely to make syntax errors and
you will find them more quickly if you do.

4.7 Nested conditionals

In addition to chaining, you can also nest one conditional within another. We
could have written the previous example as:

if (x == 0) {

System.out.println ("x is zero");

} else {

if (x > 0) {

System.out.println ("x is positive");

} else {

System.out.println ("x is negative");

}

}

40 CHAPTER 4. CONDITIONALS

There is now an outer conditional that contains two branches. The first branch
contains a simple print statement, but the second branch contains another
conditional statement, which has two branches of its own. Fortunately, those two
branches are both print statements, although they could have been conditional
statements as well.
Notice again that indentation helps make the structure apparent, but nev-

ertheless, nested conditionals get difficult to read very quickly. In general, it is
a good idea to avoid them when you can.

4.8 Boolean expressions

Most of the operations we have seen produce results that are the same type as
their operands. For example, the + operator takes two ints and produces an
int, or two doubles and produces a double, etc.
The exceptions we have seen are the comparison operators, which compare

values and return either true or false. true and false are special values in
Java, and together they make up a type called boolean.
Boolean expressions and variables work just like other types of expressions

and variables:

boolean fred;

fred = true;

boolean testResult = false;

The first example is a simple variable declaration; the second example is an
assignment, and the third example is a combination of a declaration and an
assignment. The values true and false are keywords in Java, so they may
appear in a different color, depending on your development environment.
As I mentioned, the result of a conditional operator is a boolean, so you can

store the result of a comparison in a variable:

boolean positiveFlag = (x > 0); // true if x is positive

and then use it as part of a conditional statement later:

if (positiveFlag) {

System.out.println ("x was positive when I checked it");

}

A variable used in this way is called a flag, since it flags the presence or absence
of some condition.

4.9 Logical operators

There are three logical operators in Java: AND, OR and NOT, which are
denoted by the symbols &&, || and !. The semantics (meaning) of these oper-
ators is similar to their meaning in English. For example x > 0 && x < 10 is
true only if x is greater than zero AND less than 10.

4.10. BOOLEAN METHODS 41

positiveFlag || x<0 == 0 is true if either of the conditions is true, that
is, if positiveFlag is true OR x is less than zero.
Finally, the NOT operator has the effect of negating or inverting a boolean

expression, so !positiveFlag is true if positiveFlag is false.
Logical operators often provide a way to simplify nested conditional state-

ments. For example, how would you write the following code using a single
conditional?

if (x > 0) {

if (x < 10) {

System.out.println ("x is a positive single digit.");

}

}

4.10 Boolean methods

Methods can return boolean values just like any other type. The Buggle class
includes several boolean methods:

public boolean isBrushDown ()

Return true if this Buggle will leave a trail when it moves, false
otherwise.

public boolean isOverBagel ()

Returns true if there is a bagel in the cell currently occupied by this
buggle, false otherwise.

public boolean isFacingWall ()

Returns true if this buggle is next to a wall of Buggle world and
facing it, false otherwise.

It is common to give boolean methods names that sound like yes/no ques-
tions. These methods are useful for checking whether an operation is possible
before trying it. For example:

if (becky.isOverBagel ()) {

becky.pickUpBagel ();

}

You can write your own boolean methods. For example, Buggles do not provide
a method named isBrushUp, but you could write your own.

public boolean isBrushUp () {

if (isBrushDown() == true) {

return false;

} else {

return true;

}

}

42 CHAPTER 4. CONDITIONALS

The return type is boolean, which means that every return statement has to
provide a boolean expression.
This code is nice and readable, although it is a bit longer than it needs to be.

The return value from the original method, isBrushDown, has type boolean, so
all we have to do is apply the NOT operator.

public boolean isBrushUp () {

return !isBrushDown ();

}

Here is a more interesting boolean method. It checks whether there is a bagel
on the square one step in front of the Buggle.

public boolean isBagelInFront () {

if (isFacingWall ()) {

return false;

} else {

forward ();

boolean result = isOverBagel ();

backward ();

return result;

}

}

There are two (slightly) tricky things here. One is the first branch of the con-
ditional. If we are facing a wall, then we know there is no bagel there. In that
case we can return false immediately. This kind of check is sometimes called
a special case.
In the common case, all we have to do is move forward (which we now know

is safe) and check for a bagel. The second tricky thing is that we have to store
the result temporarily because we have to move the Buggle back before we get
to the return statement.
The following code changes the state of the brush from up to down or down

to up:

if (becky.isBrushDown ()) {

becky.brushUp ();

} else {

becky.brushDown ();

}

Flipping a boolean value like this is called toggling.

4.11 Variables inside conditionals

A variable declared inside an if statement only exists inside the if statement.

4.11. VARIABLES INSIDE CONDITIONALS 43

public boolean isBagelInFront () {

if (isFacingWall ()) {

boolean result = false;

} else {

forward ();

boolean result = isOverBagel ();

backward ();

}

return result; // WRONG!!!

}

In this example, both branches create variables named result, but outside the
conditional, neither one exists.

The easiest way to fix this is to put return statements into both branches of
the conditional (as in the previous version of this method).

The alternative is to declare the variable outside the conditional.

public boolean isBagelInFront () {

boolean result;

if (isFacingWall ()) {

result = false;

} else {

forward ();

result = isOverBagel ();

backward ();

}

return result; // this works

}

We can simplify this version a little by initializing the result to false and then
changing it only if conditions warrant it.

public boolean isBagelInFront () {

boolean result = false;

if (!isFacingWall ()) {

forward ();

result = isOverBagel ();

backward ();

}

return result; // this works

}

As always when there are multiple ways to express a computation, you should
choose the one that is easiest to read and that reflects the natural structure of
the problem.

44 CHAPTER 4. CONDITIONALS

4.12 Glossary

typecast: Convert a value from one type to another.

conditional statement: Any of the forms of an if statement that execute
statements (or not) depending on the result of a boolean expression.

alternative execution: A conditional statement with two branches, an if
branch and an else branch, exactly one of which will be executed.

chaining: A way of organizing a string of consecutive conditional statements.

nested structure: In general, the ability to nest one statement within another.
In the context of conditional statements, nesting is one way of organizing
a set of conditional statements.

comparison operators: Any of the operators that compare values and pro-
duce boolean values.

boolean: A primitive type in Java, made up of the values true and false.

flag: A boolean variable that record the result of a condition operator to “flag”
a condition.

logical operators: The operators AND, OR, and NOT, which are used to
combine boolean expressions.

special case: A part of a program that handles unusual conditions that cannot
be handled by the general case.

general case: A part of a program that handles the most common and exten-
sive set of conditions.

toggle: To flip the state of a boolean variable from false to true and vice versa.

Chapter 5

Recursion

Now that we have frutiful methods and condition statements, you might be
interested to know that we have a complete programming language, by which
I mean that anything that can be computed can be expressed in this language.
Any program ever written could be rewritten using only the language features
we have used so far (actually, we would need a few commands to control devices
like the keyboard, mouse, disks, etc., but that’s all).

Proving that claim is a non-trivial exercise first accomplished by Alan Tur-
ing, one of the first computer scientists (well, some would argue that he was a
mathematician, but a lot of the early computer scientists started as mathemati-
cians). Accordingly, it is known as the Turing thesis. If you take a course on
the Theory of Computation, you will have a chance to see the proof.

5.1 Recursion

I mentioned in the last chapter that it is legal for one method to invoke another,
and we have seen several examples of that. I neglected to mention that it is also
legal for a method to invoke itself. It may not be obvious why that is a good
thing, but it turns out to be one of the most magical and interesting things a
program can do.

For example, look at the following method:

public void countdown (int n) {

if (n == 0) {

System.out.println ("Blastoff!");

} else {

System.out.println (n);

countdown (n-1);

}

}

45

46 CHAPTER 5. RECURSION

The name of the method is countdown and it takes a single integer as a param-
eter. If the parameter is zero, it prints the word “Blastoff.” Otherwise, it prints
the number and then invokes a method named countdown—itself—passing n-1
as an argument.
What happens if we invoke the method like this:

countdown (3);

The execution of countdown begins with n=3, and since n is not zero, it prints
the value 3, and then invokes itself...

The execution of countdown begins with n=2, and since n is not zero,
it prints the value 2, and then invokes itself...

The execution of countdown begins with n=1, and since n
is not zero, it prints the value 1, and then invokes itself...

The execution of countdown begins with n=0, and
since n is zero, it prints the word “Blastoff!” and
then returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.
And then you’re back to the original invocation of countdown. So the total
output looks like:

3

2

1

Blastoff!

The process of a method invoking itself is called recursion, and such methods
are said to be recursive.

5.2 Recursive definition

A recursive definition is similar to a circular definition, in the sense that the defi-
nition contains a reference to the thing being defined. A truly circular definition
is typically not very useful:

frabjuous: an adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On
the other hand, if you looked up the definition of the mathematical function
factorial, you might get something like:

5.3. FRUITFUL RECURSIVE METHODS 47

0! = 1

n! = n · (n− 1)!

(Factorial is usually denoted with the mathematical symbol !, which is not
to be confused with the Java logical operator ! which means NOT.) This
definition says that the factorial of 0 is 1, and the factorial of any other value,
n, is n multiplied by the factorial of n− 1. So 3! is 3 times 2!, which is 2 times
1!, which is 1 times 0!. Putting it all together, we get 3! equal to 3 times 2 times
1 times 1, which is 6.

5.3 Fruitful recursive methods

If you can write a recursive definition of something, you can usually write a Java
program to evaluate it. The first step is to decide what the parameters are for
the function, and what the return type is. With a little thought, you should
conclude that factorial takes an integer as a parameter and returns an integer:

public int factorial (int n) {

}

You can add this method to the Buggle class to try it out. Buggles enjoy doing
arithmetic in their spare time.
If the argument happens to be zero, all we have to do is return 1:

public int factorial (int n) {

if (n == 0) {

return 1;

}

}

Otherwise, and this is the interesting part, we have to make a recursive invoca-
tion to find the factorial of n− 1, and then multiply it by n.

public int factorial (int n) {

if (n == 0) {

return 1;

} else {

int recurse = factorial (n-1);

int result = n * recurse;

return result;

}

}

If we invoke factorial with the value 3:
Since 3 is not zero, we take the second branch and calculate the factorial of

n− 1...

48 CHAPTER 5. RECURSION

Since 2 is not zero, we take the second branch and calculate the
factorial of n− 1...

Since 1 is not zero, we take the second branch and calculate
the factorial of n− 1...

Since 0 is zero, we take the first branch and re-
turn the value 1 immediately without making any
more recursive invocations.

The return value (1) gets multiplied by n, which is 1, and
the result is returned.

The return value (1) gets multiplied by n, which is 2, and the result
is returned.

The return value (2) gets multiplied by n, which is 3, and the result, 6, is
returned to whoever invoked factorial (3).
Here is what Execution Land looks like while this recursion is taking place.

3

recurse resultn

if (n==0) {

} else {

 int recurse = factorial (n−1);

 int result = n * recurse;

 return result;

 return 1;

}

if (n==0) {

} else {

 int recurse = factorial (n−1);

 int result = n * recurse;

 return result;

 return 1;

}

if (n==0) {

} else {

 int recurse = factorial (n−1);

 int result = n * recurse;

 return result;

 return 1;

}

2

recurse resultn

1

recurse resultn

1 1

factorial factorial factorial

This is a snapshot of the point in the execution where the last invocation of
factorial, the one that got 0 as an argument, has just returned the value 1.
The previous invocation of factorial takes that result and multiplies it by

n, which is 1, yielding the result 1. That’s the value it is about to return.
If we come back a little later, we will see this state:

3

recurse resultn

if (n==0) {

} else {

 int recurse = factorial (n−1);

 int result = n * recurse;

 return result;

 return 1;

}

if (n==0) {

} else {

 int recurse = factorial (n−1);

 int result = n * recurse;

 return result;

 return 1;

}

2

recurse resultn

21

The execution frame that got n=1 has completed and vanished. But before
it left, it returned the value 1, which was assigned to the variable recurse. The
execution frame that got n=2 can now compute result=2 and return 2.

5.4. LEAP OF FAITH 49

As an exercise, draw a JEM for the program state just before the last exe-
cution frame disappears.

5.4 Leap of faith

Following the flow of execution is one way to read programs, but as you saw
in the previous section, it can quickly become labarynthine. An alternative is
what I call the “leap of faith.” When you come to a method invocation, instead
of following the flow of execution, you assume that the method works correctly
and returns the appropriate value.

In fact, you are already practicing this leap of faith when you use built-in
methods. When you invoke a built-in method, you don’t examine its implemen-
tation. You just assume that it works, because the people who wrote the Java
classes were good programmers.

Well, the same is true when you invoke one of your own methods. For
example, as an exercise, write a method called isSingleDigit that determines
whether a number is between 0 and 9. Once you have convinced ourselves that
this method is correct—by testing and examination of the code—you can use
the method without ever looking at the code again.
The same is true of recursive methods. When you get to the recursive

invocation, instead of following the flow of execution, you should assume that
the recursive invocation works (yields the correct result), and then ask yourself,
“Assuming that I can find the factorial of n− 1, can I compute the factorial of
n?” In this case, it is clear that you can, by multiplying by n.

Of course, it is a bit strange to assume that the method works correctly
when you have not even finished writing it, but that’s why it’s called a leap of
faith!

5.5 Another example

In the previous example I used temporary variables to spell out the steps, and
to make the code easier to debug, but I could have saved a few lines:

public int factorial (int n) {

if (n == 0) {

return 1;

} else {

return n * factorial (n-1);

}

}

From now on I will tend to use the more concise version, but I recommend that
you use the more explicit version while you are developing code. When you have
it working, you can tighten it up, if you are feeling inspired.

50 CHAPTER 5. RECURSION

After factorial, the classic example of a recursively-defined mathematical
function is fibonacci, which has the following definition:

fibonacci(0) = 1

fibonacci(1) = 1

fibonacci(n) = fibonacci(n− 1) + fibonacci(n− 2);

Translated into Java, this is

public int fibonacci (int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return fibonacci (n-1) + fibonacci (n-2);

}

}

If you try to follow the flow of execution here, even for fairly small values of n,
your head explodes. But according to the leap of faith, if we assume that the
two recursive invocations (yes, you can make two recursive invocations) work
correctly, then it is clear that we get the right result by adding them together.

5.6 Recursion in BuggleWorld

Let’s apply what we’ve learned about recursion to a Buggle problem. What if we
would like to tell a Buggle to go forward until it hits a wall? As long as Buggles
know when they reach the wall, we can do this with recursion. Fortunately,
Buggles provide a method called isFacingWall that returns true if the Buggle
is next to a wall and facing it.
Assume that the Buggle is three steps from the wall, as in the figure:

The solution starts by checking if we are already facing a wall. If so, then the
problem is trivial—we can return immediately without doing anything. Other-
wise, we should take a single step forward. Here’s what the program looks like
so far:

public void goToWall () {

if (isFacingWall ()) {

return;

} else {

forward ();

5.7. RECURSION WITH PARAMETERS 51

// now what?

}

}

And then what? Well, we are right back where we started. We want the Buggle
to go forward until it reaches a wall. Fortunately, we know how to do that. All
we have to do is invoke goToWall:

public void goToWall () {

if (isFacingWall ()) {

return;

} else {

forward ();

goToWall ();

}

}

Strangely, that’s all there is to it. As an exercise, draw a JEM for this method
when the last execution frame is about to complete.

5.7 Recursion with parameters

By now you have seen TurtleWorld and Turtles in lecture and laboratory. We
can extend the Turtle class and add the following method:

public void spiral (int steps, int angle, int length, int increment) {

if (steps==0) {

return;

} else {

fd (length);

lt (angle);

spiral (steps-1, angle, length+increment, increment);

}

}

spiral takes four integer parameters. The first parameter, steps deter-
mines how many line segments there are in the spiral. When steps is zero,
we are done—the method does nothing and returns without making a recursive
invocation. This is called the base case, because it is the end of the recursion.
The other branch of the conditional is called the recursive step, since it takes
one step toward the base case.
In this case the recursive step draws a line segment with length length,

turns to the left by angle angle and then makes a recursive invocation to draw
the rest of the spiral.
The arguments of the recursive invocation are based on the parameters we

just received. Since we just took one step, the number of steps remaining is
steps-1. The angle between segments doesn’t change, so we just pass it along.

52 CHAPTER 5. RECURSION

The value we pass as the new length is the old length plus whatever the
value of increment is. Changing the length from step to step is what makes a
spiral. Otherwise, we get a ... well, you can figure it out, or try it by setting
increment to zero.

It might seem wasteful to pass angle and increment from one execution
frame to the next, since they don’t change. But that’s the price we pay for
modularity.

5.8 Recursion with return values

Suppose we want to create a Buggle that walks to the wall eating bagels as she
goes along and returns the number of bagels that she has eaten. How can we do
this? Well, if we only had to walk to the wall eating bagels this would be easy.
All we would have to do is make the Buggle go to the wall (as we just learned
in the previous section) and along the way, if she is over any bagels, have her
eat them. So, the new piece of this problem is to have her count the number of
bagels as she eats them and return the result.

Here is a method that solves this problem:

public int eatBagels () {

if (isFacingWall ()) {

if (isOverBagel ()) {

pickUpBagel ();

return 1;

} else {

return 0;

}

}

if (isOverBagel ()) {

pickUpBagel ();

forward ();

return eatBagels () + 1;

} else {

forward ();

return eatBagels ();

}

}

}

The return type of the method is int. It returns the number of bagels that
got eaten. As an exercise, draw the JEM for this example.

5.9. INFINITE RECURSION 53

5.9 Infinite recursion

In all the examples we have looked at, there is a branch in each recursive method
that returns without making another recursive call. This branch is the base case,
and it is required to make the program finish in a finite amount of time. Without
it, the program will recurse forever.

public void countdown (int n) {

System.out.println (n);

countdown (n-1);

}

This version of countdown is recursive, but it has no base case. If you run it,
you see something like:

3

2

1

0

-1

-2

-3

...

And eventually you will see a StackOverflowException. The stack is the
structure in the Java run-time system that contains all the execution frames for
running methods. In a recursive method, there is one execution frame for every
time the method invokes itself.
If a method recurses forever, eventually the stack fills with execution frames

and overflows. At that point the program stops running. This situation is called
an infinite recursion.
In general, to show that a recursive method is correct, you have to show

three things:

• There is a base case (and it is correct).

• The recursive step is correct, assuming that the recursive invocation works.

• For all parameters the method might receive, the program will reach the
base case in a finite number of steps.

5.10 Glossary

complete language: A programming language that can implement any com-
putable function.

54 CHAPTER 5. RECURSION

recursion: A way of programming that involves methods that invoke them-
selves.

recursive: A program that contains one or more recursive methods.

base case: The branch in a recursive function that does not make a recursive
invocation, thereby terminating the recursion.

recursive step: The branch in a recursive function that makes one or more
recursive invocations.

stack: The structure in the Java run-time system that contains execution
frames.

infinite recursion: If a recursion lacks a base case, or the base case is never
reached, the program will continue to recurse forever, or until a run-time
error occurs.

Chapter 6

Lists

6.1 The modulus operator

The modulus operator works on integers (and integer expressions) and yields
the remainder when the first operand is divided by the second. In Java, the
modulus operator is a percent sign, %. The syntax is exactly the same as for
other operators:

int quotient = 7 / 3;

int remainder = 7 % 3;

The first operator, integer division, yields 2. The second operator yields 1.
Thus, 7 divided by 3 is 2 with 1 left over.
The modulus operator turns out to be surprisingly useful. For example, you

can check whether one number is divisible by another: if x % y is zero, then x

is divisible by y.
Also, you can use the modulus operator to extract the rightmost digit or

digits from a number. For example, x % 10 yields the rightmost digit of x (in
base 10). Similarly x % 100 yields the last two digits.

6.2 Integer Linked Lists

A linked list is a compound data structure, which means that it contains an
ordered set of elements. The IntList class defines a particular kind of linked list
whose elements are integers.
Lists are recursive data structures, because they are defined recursively,

like this.
An IntList is either:

• the empty list, or

• a node made up of a head and a tail. The head is an integer and the tail
is an IntList.

55

56 CHAPTER 6. LISTS

This definition is recursive in the same way the definition of “frabjuous” is.

As usual, the IntList contract describes the methods you use to create and
manipulate lists.

6.3 IntList methods

There are no IntList constructors, and no methods you can invoke on objects.
In other words, there are no instance methods. Instead, all IntList methods
are class methods.

The first methods we’ll look at are empty and prepend.

public static IntList empty()

Returns an empty integer list.

public static IntList prepend (int n, IntList list)

Returns a new integer list node whose head is n and whose tail is
list.

The word static in the function declaration indicates that it is a class
method. If you refer to an IntList method from inside another class definition,
you have to specify the IntList class:

IntList elist = IntList.empty ();

This statement creates a new variable and makes it point to a new object that
represents an empty list.

The prepend method takes an element and an IntList as arguments and
returns a new list that has all the elements of the original list, plus the new
element prepended (added at the beginning).

IntList singleton = IntList.prepend (4, elist);

The result is that singleton refers to a list that contains the element 4. A list
with a single element is called a singleton.

There is a standard way to represent lists using box and pointer notation:

list 3 5 7

The variable named list is represented in the usual way; it contains a
reference to the first node in the list. The nodes are represented as boxes
containing an element (the head) and a reference to the next node (the tail).
At the end of the list, the empty list is represented by a box with a dot and no
element.

6.4. MATH METHODS 57

6.4 Math methods

The Math class is a built-in class (part of the Java language) that provides all
the basic math functions, like sin and cos. They are all class methods, so when
you invoke them you have to specify the name of the class and the name of the
method:

double root = Math.sqrt (17.0);

double angle = 1.5;

double height = Math.sin (angle);

The first example sets root to the square root of 17. The second example finds
the sine of 1.5, which is the value of the variable angle. Java assumes that
the values you use with sin and the other trigonometric functions (cos, tan)
are in radians. To convert from degrees to radians, you can divide by 360 and
multiply by 2π. Conveniently, Java provides π as a built-in value:

double degrees = 90;

double angle = degrees * 2 * Math.PI / 360.0;

Notice that PI is in all capital letters. Java does not recognize Pi, pi, or pie.
Another useful method in the Math class is round, which rounds a floating-

point value off to the nearest integer and returns an int.

int x = Math.round (Math.PI * 20.0);

In this case the multiplication happens first, before the method is invoked. The
result is 63 (rounded up from 62.8319).
Finally, the Math class contains max and min functions that return the larger

of two numbers. It works with both integers and doubles.

int bigger = Math.max (5, 7);

double smaller = Math.min (5.5, 7.7);

What do you think happens if you invoke Math.max (5, 7.7)?

6.5 Extending IntList

If you extend the IntList class, you can refer to the IntList methods by name,
without invoking them on an object. For example:

public class MyList extends IntList {

public static MyList singleton (int n) {

IntList elist = empty ();

IntList singleton = prepend (n, elist);

return singleton;

}

}

58 CHAPTER 6. LISTS

The MyList class has all the same methods as IntList, but in addition there is
a method called singleton that takes an integer and returns a MyList object
that represents a list with a single element.
Since MyList extends IntList, Java knows that empty refers to the

IntList.empty method.

6.6 Anatomy of an IntList

Every (non-empty) list is made up of a head and a tail. The head is the element
of the first node. The tail is a list that contains all but the first node. The
IntList class contains methods to extract the head and tail of lists:

int first = head (list);

If you invoke head and pass an empty list as an argument, it causes a run-time
error. You can avoid that by checking for an empty list before invoking head:

if (!isEmpty (list)) {

int first = head (list);

}

The isEmpty method returns true if the list is empty, and false otherwise.
To get the tail of a list:

IntList rest = tail (list);

Again, it is illegal to send an empty list as an argument to tail.
It is tempting to think of head and tail as symmetric operations, but re-

member that their return types are not the same.

6.7 Printing IntLists

While you are debugging, it is useful to be able to print the elements of a list.
It is not obvious how to do that, but we can start by thinking about what we
do know. First, we know how to print the empty list—do nothing. Also, we
know how to print the head of the list, since we know how to print integers:

int first = head (list);

System.out.println (first);

All we need now is a way to print the rest of the list. Using the divide, conquer
and glue strategy, we can solve the problem recursively:

public static void printList (IntList list)

{

if (isEmpty (list)) {

return;

6.8. TRAVERSING LISTS 59

}

int first = head (list);

System.out.println (first);

IntList rest = tail (list);

printList (rest);

}

The base case is the empty list; it returns without doing anything. For the
remainder of the method, we know that the list cannot be empty, because oth-
erwise we would have returned already. Therefore we know that the invocations
of head and tail cannot cause an error.
The rest of the method is straightforward. We use println to print the head

of the list and printList to print the tail.
Processing a list like this, by performing an operation on the head and then

processing the tail, is called traversing or walking down the list.

6.8 Traversing lists

Traversing a list is a general tool that solves a lot of problems. For example,
the following method adds up all the elements in a list:

public static int sum (IntList list)

{

if (isEmpty (list)) {

return 0;

}

int first = head (list);

IntList rest = tail (list);

int sumRest = sum (rest);

return first + sumRest;

}

Again, we solve the problem by identifying a base case and a recursive step.
The base case is an empty list; we know that the sum of no elements is 0, so we
can return immediately without making a recursive invocation.
The recursive step has three parts: first, we break the list into a head and a

tail. Next, we find the sum of the elements in the head (that’s trivial). Finally,
we find the sum of the elements in the tail (that’s the recursive invocation).
The grand total is just the sum of first and sumRest. We can write this

method more concisely by eliminating the temporary variables:

public static int sum (IntList list)

{

if (isEmpty (list)) {

return 0;

} else {

60 CHAPTER 6. LISTS

return head (list) + sum (tail (list));

}

}

As an exercise, write a method called prod that computes the product of all the
elements in a list (multiplies them all together).
The reason this solution works is that addition is associative. That implies

that the sum of all the elements is the same as the first element plus the sum
of the rest.

6.9 Checking lists

The same logic applies to traversing a list and checking whether a condition
holds. For example, areAllPositive traverses a list and checks if all the ele-
ments are positive.
As usual, the base case is the empty list, although it takes a bit of thought

to decide whether a list with no elements can be considered all positive. It
turns out that it’s best to say “yes.” After all, it certainly doesn’t contain any
negative elements.
In addition to the case of the empty list, this method has a second base

case. If we find a non-positive element, we can stop immediately and return
false without making a recursive invocation and without traversing the rest of
the list.
Finally, the recursive step goes like this: if the current element is positive,

and the rest of the list is all positive, then the whole list must be positive.

public static boolean areAllPositive (IntList list)

{

if (isEmpty (list)) {

return true;

} else {

if (head (list) <= 0) {

return false;

} else {

return areAllPositive (tail (list));

}

}

}

I am not fond of nested conditionals, so I would consider rewriting the method
like this:

public static boolean areAllPositive (IntList list)

{

if (isEmpty (list)) {

return true;

6.10. FILTERING A LIST 61

}

return (head(list) > 0) && areAllPositive (tail (list));

}

6.10 Filtering a list

As a final example, we will traverse a list and create a new list that contains only
the even elements from the original. This kind of selection is called filtering.
As usual, we approach the problem by identifying a base case and a recursive

step. The base case is—you guessed it—the empty list. Obviously the empty
list contains no even elements, so the result is the empty list.
As usual, the next step is to break the list into a head and a tail. The

recursive step is to find all the even elements in the tail.
Now there are two possibilities. If the element in the head is odd, then

all we have to do is return the list of even numbers we got from the recursive
invocation.
If the head element is even, then we have to prepend it onto the list of even

number. Fortunately, we have a method for that.
Here’s what it all looks like in Java.

public static IntList allEven (IntList list)

{

if (isEmpty (list)) {

return empty ();

}

IntList evens = allEven (tail (list));

int first = head (list);

if (first%2 == 0) {

return prepend (first, evens);

} else {

return evens;

}

}

There are three return statements, but that’s ok, because only one of them can
ever execute, and all of them return an expression that has the right type.
As an exercise, write a method called postpend that takes an integer and

a list, and that returns a new list with all the elements of the original plus the
integer added at the end.

6.11 ObjectLists

The ObjectList class is similar to the IntList class except that the elements can
be any kind of object. For example, to build a list of Buggles:

62 CHAPTER 6. LISTS

ObjectList list = ObjectList.empty ();

list = ObjectList.prepend (becky, list);

list = ObjectList.prepend (bobby, list);

In this example I make multiple assignments to the variable list. Each assign-
ment changes the reference to refer to a new list. In the end, list refers to a
list that contains two Buggles as elements.
The elements in the list have type Object, so the return type from head is

also Object:

Object obj = ObjectList.head (list);

The object that obj refers to is bobby, but at this point the compiler does not
know that bobby is a Buggle, so we can’t use any of the Buggle methods. Try
the following so you will see what the error message looks like:

obj.forward (); // this is not legal

It’s as if bobby has amnesia. Fortunately, we can remind him of his Buggleness
with a typecast:

Buggle bobby = (Buggle) obj;

bobby.forward();

If we made a mistake somehow, and the object that obj refers to is not actually
a Buggle, we get a ClassCastException.
Other than that bit of awkwardness, ObjectLists work just the way IntLists

do.

6.12 Glossary

linked list: A compound data structure made up of a sequence of nodes, each
of which contains an element and a reference to the next node.

instance method: A method that is invoked on an object.

class method: A method that is not invoked on an object.

singleton: A list with a single element.

traverse: An operation that processes a list by applying an operating to each
element in the list.

walk down: Another way of saying “traverse”.

filter: A way of processing a compound data structure and selecting elements
that have a certain property.

Chapter 7

Iteration

7.1 The while statement

One of the things computers are often used for is the automation of repetitive
tasks. Repeating identical or similar tasks without making errors is something
that computers do well and people do poorly.
We have already seen programs that use recursion to perform repetition, like

countdown and spiral. This type of repetition is called iteration, and Java
provides several language features, like the while statement, that make it easier
to write iterative programs.

Using a while statement, we can rewrite countdown:

public void countdown (int n) {

while (n > 0) {

System.out.println (n);

n = n-1;

}

System.out.println ("Blastoff!");

}

You can almost read a while statement as if it were English. What this method
means is, “While n is greater than zero, continue printing the value of n and then
reducing the value of n by 1. When you get to zero, print the word ‘Blastoff!”’
More formally, the flow of execution for a while statement is as follows:

1. Evaluate the condition in parentheses, yielding true or false.

2. If the condition is false, exit the while statement and continue execution
at the next statement.

3. If the condition is true, execute each of the statements between the
squiggly-brackets, and then go back to step 1.

63

64 CHAPTER 7. ITERATION

This type of flow is called a loop because the third step loops back around
to the top. Notice that if the condition is false the first time through the loop,
the statements inside the loop are never executed. The statements inside the
loop are sometimes called the body of the loop.
The body of the loop should change the value of one or more variables so

that, eventually, the condition becomes false and the loop terminates. Otherwise
the loop will repeat forever, which is called an infinite loop. An endless source
of amusement for computer scientists is the observation that the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop.
In the case of countdown, we can prove that the loop will terminate because

we know that the value of n is finite, and we can see that the value of n gets
smaller each time through the loop (each iteration), so eventually we have to
get to zero. In other cases it is not so easy to tell:

public void sequence (int n) {

while (n != 1) {

System.out.println (n);

if (n%2 == 0) { // n is even

n = n / 2;

} else { // n is odd

n = n*3 + 1;

}

}

}

The condition for this loop is n != 1, so the loop will continue until n is 1,
which will make the condition false.
At each iteration, the program prints the value of n and then checks whether

it is even or odd. If it is even, the value of n is divided by two. If it is odd, the
value is replaced by 3n + 1. For example, if the starting value (the argument
passed to sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.
Since n sometimes increases and sometimes decreases, there is no obvious

proof that n will ever reach 1, or that the program will terminate. For some
particular values of n, we can prove termination. For example, if the starting
value is a power of two, then the value of n will be even every time through the
loop, until we get to 1.
Particular values aside, the interesting question is whether we can prove that

this program terminates for all values of n. So far, no one has been able to prove
it or disprove it!

7.2 Tables

One of the things loops are good for is generating and printing tabular data.
For example, before computers were readily available, people had to calculate
logarithms, sines and cosines, and other common mathematical functions by
hand.

7.2. TABLES 65

To make that easier, there were books containing long tables where you could
find the values of various functions. Creating these tables was slow and boring,
and the result tended to be full of errors.
When computers appeared on the scene, one of the initial reactions was,

“This is great! We can use the computers to generate the tables, so there
will be no errors.” That turned out to be true (mostly), but shortsighted. Soon
thereafter computers (and calculators) were so pervasive that the tables became
obsolete.
Well, almost. It turns out that for some operations, computers use tables of

values to get an approximate answer, and then perform computations to improve
the approximation. In some cases, there have been errors in the underlying
tables, most famously in the table the original Intel Pentium used to perform
floating-point division.
Although a “log table” is not as useful as it once was, it still makes a good

example of iteration. The following program prints a sequence of values in the
left column and their logarithms in the right column:

double x = 1.0;

while (x < 10.0) {

System.out.println (x + " " + Math.log(x));

x = x + 1.0;

}

The output of this program is

1.0 0.0

2.0 0.6931471805599453

3.0 1.0986122886681098

4.0 1.3862943611198906

5.0 1.6094379124341003

6.0 1.791759469228055

7.0 1.9459101490553132

8.0 2.0794415416798357

9.0 2.1972245773362196

Looking at these values, can you tell what base the log function uses by default?
Since powers of two are so important in computer science, we often want to

find logarithms with respect to base 2. To find that, we have to use the following
formula:

log2 x =
logex

loge2
(7.1)

Changing the print statement to

System.out.println (x + " " + Math.log(x) / Math.log(2.0));

yields

66 CHAPTER 7. ITERATION

1.0 0.0

2.0 1.0

3.0 1.5849625007211563

4.0 2.0

5.0 2.321928094887362

6.0 2.584962500721156

7.0 2.807354922057604

8.0 3.0

9.0 3.1699250014423126

We can see that 1, 2, 4 and 8 are powers of two, because their logarithms base
2 are round numbers. If we wanted to find the logarithms of other powers of
two, we could modify the program like this:

double x = 1.0;

while (x < 100.0) {

System.out.println (x + " " + Math.log(x) / Math.log(2.0));

x = x * 2.0;

}

Now instead of adding something to x each time through the loop, which yields
an arithmetic sequence, we multiply x by something, yielding a geometric
sequence. The result is:

1.0 0.0

2.0 1.0

4.0 2.0

8.0 3.0

16.0 4.0

32.0 5.0

64.0 6.0

Log tables may not be useful any more, but for computer scientists, knowing
the powers of two is! Some time when you have an idle moment, you should
memorize the powers of two up to 65536 (that’s 216).

7.3 Two-dimensional tables

A two-dimensional table is a table where you choose a row and a column and
read the value at the intersection. A multiplication table is a good example.
Let’s say you wanted to print a multiplication table for the values from 1 to 6.
A good way to start is to write a simple loop that prints the multiples of 2,

all on one line.

int i = 1;

while (i <= 6) {

7.4. ENCAPSULATION AND GENERALIZATION 67

System.out.print (2*i + " ");

i = i + 1;

}

System.out.println ("");

The first line initializes a variable named i, which is going to act as a counter,
or loop variable. As the loop executes, the value of i increases from 1 to 6,
and then when i is 7, the loop terminates. Each time through the loop, we print
the value 2*i followed by three spaces. Since we are using the print command
rather than println, all the output appears on a single line.
In some environments the output from print gets stored without being

displayed until println is invoked. If the program terminates, and you forget
to invoke println, you may never see the stored output.
The output of this program is:

2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

7.4 Encapsulation and generalization

Encapsulation usually means taking a piece of code and wrapping it up in a
method, allowing you to take advantage of all the things methods are good for.
Generalization means taking something specific, like printing multiples of 2,

and making it more general, like printing the multiples of any integer.
Here’s a method that encapsulates the loop from the previous section and

generalizes it to print multiples of n.

public void printMultiples (int n) {

int i = 1;

while (i <= 6) {

System.out.print (n*i + " ");

i = i + 1;

}

System.out.println ("");

}

To encapsulate, all I had to do was add the first line, which declares the name,
parameter, and return type. To generalize, all I had to do was replace the value
2 with the parameter n.
If I invoke this method with the argument 2, I get the same output as before.

With argument 3, the output is:

3 6 9 12 15 18

and with argument 4, the output is

68 CHAPTER 7. ITERATION

4 8 12 16 20 24

By now you can probably guess how we are going to print a multiplication table:
we’ll invoke printMultiples repeatedly with different arguments. In fact, we
are going to use another loop to iterate through the rows.

int i = 1;

while (i <= 6) {

printMultiples (i);

i = i + 1;

}

First of all, notice how similar this loop is to the one inside printMultiples.
All I did was replace the print statement with a method invocation.

The output of this program is

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

which is a (slightly sloppy) multiplication table. If the sloppiness bothers you,
Java provides methods that give you more control over the format of the output,
but I’m not going to get into that here.

7.5 Methods

In the last section I mentioned “all the things methods are good for.” About
this time, you might be wondering what exactly those things are. Here are some
of the reasons methods are useful:

• By giving a name to a sequence of statements, you make your program
easier to read and debug.

• Dividing a long program into methods allows you to separate parts of the
program, debug them in isolation, and then compose them into a whole.

• Methods facilitate both recursion and iteration.

• Well-designed methods are often useful for many programs. Once you
write and debug one, you can reuse it.

7.6. MORE ENCAPSULATION 69

7.6 More encapsulation

To demonstrate encapsulation again, I’ll take the code from the previous section
and wrap it up in a method:

public void printMultTable () {

int i = 1;

while (i <= 6) {

printMultiples (i);

i = i + 1;

}

}

The process I am demonstrating is a common development plan. You develop
code gradually by adding lines to an existing method, and then when you get
it working, you extract it and wrap it up in a new method.
The reason this is useful is that you sometimes don’t know when you start

writing exactly how to divide the program into methods. This approach lets
you design as you go along.

7.7 More generalization

As another example of generalization, imagine you wanted a program that would
print a multiplication table of any size, not just the 6x6 table. You could add a
parameter to printMultTable:

public void printMultTable (int high) {

int i = 1;

while (i <= high) {

printMultiples (i);

i = i + 1;

}

}

I replaced the value 6 with the parameter high. If I invoke printMultTable
with the argument 7, I get

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

7 14 21 28 35 42

which is fine, except that I probably want the table to be square (same num-
ber of rows and columns), which means I have to add another parameter to
printMultiples, to specify how many columns the table should have.

70 CHAPTER 7. ITERATION

Just to be annoying, I will also call this parameter high, demonstrating
that different methods can have parameters with the same name (just like local
variables):

public void printMultiples (int n, int high) {

int i = 1;

while (i <= high) {

System.out.print (n*i + " ");

i = i + 1;

}

System.out.println ("");

}

public void printMultTable (int high) {

int i = 1;

while (i <= high) {

printMultiples (i, high);

i = i + 1;

}

}

Notice that when I added a new parameter, I had to change the first line of the
method (the interface or prototype), and I also had to change the place where
the method is invoked in printMultTable. As expected, this program generates
a square 7x7 table:

1 2 3 4 5 6 7

2 4 6 8 10 12 14

3 6 9 12 15 18 21

4 8 12 16 20 24 28

5 10 15 20 25 30 35

6 12 18 24 30 36 42

7 14 21 28 35 42 49

When you generalize a method appropriately, you often find that the resulting
program has capabilities you did not intend. For example, you might notice
that the multiplication table is symmetric, because ab = ba, so all the entries in
the table appear twice. You could save ink by printing only half the table. To
do that, you only have to change one line of printMultTable. Change

printMultiples (i, high);

to

printMultiples (i, i);

and you get

7.8. LOOPS AND LISTS 71

1

2 4

3 6 9

4 8 12 16

5 10 15 20 25

6 12 18 24 30 36

7 14 21 28 35 42 49

I’ll leave it up to you to figure out how it works.

7.8 Loops and lists

Many of the list operations in the previous chapter can also be written as loops.
For example, to count the number of nodes in a list, we can traverse the list
until we reach the empty list:

public int length (IntList list) {

int count = 0;

while (!isEmpty (list)) {

count = count + 1;

list = tail (list);

}

return count;

}

Each time through the list, the assignment list = tail (list) moves from
one node to the next.

As an exercise, write a version of sum that uses a loop to add up the elements
of an IntList.

7.9 Glossary

loop: A statement that executes repeatedly while or until some condition is
satisfied.

infinite loop: A loop whose condition is always true.

body: The statements inside the loop.

iteration: One pass through (execution of) the body of the loop, including the
evaluation of the condition.

encapsulate: To divide a large complex program into components (like meth-
ods) and isolate the components from each other (for example, by using
local variables).

72 CHAPTER 7. ITERATION

local variable: A variable that is declared inside a method and that exists
only within that method. Local variables cannot be accessed from outside
their home method, and do not interfere with any other methods.

generalize: To replace something unnecessarily specific (like a constant value)
with something appropriately general (like a variable or parameter). Gen-
eralization makes code more versatile, more likely to be reused, and some-
times even easier to write.

development plan: A process for developing a program. In this chapter, I
demonstrated a style of development based on developing code to do sim-
ple, specific things, and then encapsulating and generalizing.

Chapter 8

Objects as containers

8.1 Points and Rectangles

In this chapter, we are going to use two new object types that are part of the
Java language, Point and Rectangle. Right from the start, I want to make it
clear that these points and rectangles are not graphical objects that appear on
the screen. They are variables that contain data, just like ints and doubles.
Like other variables, they are used internally to perform computations.

8.2 Packages

The built-in Java classes are divided into a number of packages, including
java.lang, which the most commonly-used classes, and which is imported au-
tomatically, and java.awt, which contains classes that pertain to the Java Ab-
stract Window Toolkit (AWT). The AWT contains classes for windows, but-
tons, graphics, etc.
In order to use a package, you have to import it using (surprise) an import

statment. All import statements appear at the beginning of the program,
outside the class definition. To import a specific class from a package:

import java.util.Stack;

This imports the Stack class from the java.util package. More often, we want
to import all the classes from a package, using the * operator:

import java.awt.*;

This imports all the classes in the AWT package. The definitions of the Point
and Rectangle classes are in java.awt, so any program that uses them should
include this import statement.
The documentation for all Java packages is available online from

73

74 CHAPTER 8. OBJECTS AS CONTAINERS

http://java.sun.com/products/jdk/1.1/docs/api/packages.html

for Java version 1.1 and

http://java.sun.com/products/jdk/1.2/docs/api/overview-summary.html

for Java version 1.2.

8.3 Point objects

A point is two numbers (coordinates) that we treat collectively as a single object.
In mathematical notation, points are often written in parentheses, with a comma
separating the coordinates. For example, (0, 0) indicates the origin, and (x, y)
indicates the point x units to the right and y units up from the origin.
In Java, a point is represented by a Point object. To create a new point,

you have to use the new command:

Point blank;

blank = new Point (3, 4);

The first line is a conventional variable declaration: blank has type Point. The
second line invokes the new command to create the new point, (3, 4).
The result of the new command is a reference to the new point, as shown

here:

blank

3x:

y: 4

The big box shows the newly-created object with the instance variables for
the Point class, x and y.

8.4 Instance variables

You can access the instance variables of an object using “dot notation.”

int x = blank.x;

The expression blank.x means “go to the object blank refers to, and get the
value of x.” In this case we assign that value to a local variable named x. Notice
that there is no conflict between the local variable named x and the instance
variable named x. The purpose of dot notation is to identify which variable you
are referring to unambiguously.

8.5. OBJECTS AS PARAMETERS 75

You can use dot notation as part of any Java expression, so the following
are legal.

System.out.println (blank.x + ", " + blank.y);

int distance = blank.x * blank.x + blank.y * blank.y;

The first line prints 3, 4; the second line calculates the value 25.

8.5 Objects as parameters

You can pass objects as parameters in the usual way. For example

public static void printPoint (Point p) {

System.out.println ("(" + p.x + ", " + p.y + ")");

}

is a method that takes a point as an argument and prints it in the standard
format. If you invoke printPoint (blank), it will print (3, 4). Actually, Java
has a built-in method for printing Points. If you invoke System.out.println
(blank), you get

java.awt.Point[x=3,y=4]

The standard format for printing objects is the name of the type, followed by the
contents of the object, including the names and values of the instance variables.

As a second example, we can write a distancemethod that takes two Points
as parameters:

public static double distance (Point p1, Point p2) {

double dx = (double)(p2.x - p1.x);

double dy = (double)(p2.y - p1.y);

return Math.sqrt (dx*dx + dy*dy);

}

The typecasts are not really necessary; I just added them as a reminder that
the instance variables in a Point are integers.

8.6 Rectangles

Rectangles are similar to points, except that they have four instance variables,
named x, y, width and height. Other than that, everything is pretty much the
same.

Rectangle box = new Rectangle (0, 0, 100, 200);

76 CHAPTER 8. OBJECTS AS CONTAINERS

creates a new Rectangle object and makes box refer to it. The figure shows
the effect of this assignment.

x:

y:

box

width: 100

200

0

0 height:

If you print box, you get

java.awt.Rectangle[x=0,y=0,width=100,height=200]

Again, this is the result of a built-in Java method that knows how to print
Rectangle objects.

8.7 Objects as return types

You can write methods that return objects. For example, findCenter takes a
Rectangle as an argument and returns a Point that contains the coordinates
of the center of the Rectangle:

public static Point findCenter (Rectangle box) {

int x = box.x + box.width/2;

int y = box.y + box.height/2;

return new Point (x, y);

}

Notice that you can use new to create a new object, and then immediately use
the result as a return value.

8.8 Objects are mutable

You can change the contents of an object by making an assignment to one of
its instance variables. For example, to “move” a rectangle without changing its
size, you could modify the x and y values:

box.x = box.x + 50;

box.y = box.y + 100;

The result is shown in the figure:

8.9. ALIASING 77

x:

y:

0

0

box

200

width:

height:100

100 50

We could take this code and encapsulate it in a method, and generalize it
to move the rectangle by any amount:

public static void moveRect (Rectangle box, int dx, int dy) {

box.x = box.x + dx;

box.y = box.y + dy;

}

The variables dx and dy indicate how far to move the rectangle in each direction.
Invoking this method has the effect of modifying the Rectangle that is passed
as an argument.

Rectangle box = new Rectangle (0, 0, 100, 200);

moveRect (box, 50, 100);

System.out.println (box);

prints java.awt.Rectangle[x=50,y=100,width=100,height=200].
Modifying objects by passing them as arguments to methods can be useful,

but it can also make debugging more difficult because it is not always clear
which method invocations modify their arguments. Later, I will discuss some
pros and cons of this programming style.
In the meantime, we can enjoy the luxury of Java’s built-in methods, which

include translate, which does exactly the same thing as moveRect, although
the syntax for invoking it is a little different. It is an object method, so instead of
passing the Rectangle as an argument, we invoke translate on the Rectangle
and pass only dx and dy as arguments.

box.translate (50, 100);

The effect is the same.

8.9 Aliasing

Remember that when you make an assignment to an object variable, you are
assigning a reference to an object. It is possible to have multiple variables that
refer to the same object. For example, this code:

Rectangle box1 = new Rectangle (0, 0, 100, 200);

Rectangle box2 = box1;

78 CHAPTER 8. OBJECTS AS CONTAINERS

generates a state diagram that looks like this:

x:

y:

width: 100

200

0

0 height:

box1

box2

Both box1 and box2 refer or “point” to the same object. In other words,
this object has two names, box1 and box2. This is an example of aliasing.
When two variables are aliased, any changes that affect one variable also

affect the other. For example:

System.out.println (box2.width);

box1.grow (50, 50);

System.out.println (box2.width);

The first line prints 100, which is the width of the Rectangle referred to by
box2. The second line invokes the grow method on box1, which expands the
Rectangle by 50 pixels in every direction (see the documentation for more
details). The effect is shown in the figure:

x:

y:

0

0

box1

box2

100

200

width:

height:

-50

-50

200

300

As should be clear from this figure, whatever changes are made to box1 also
apply to box2. Thus, the value printed by the third line is 200, the width of
the expanded rectangle. (As an aside, it is perfectly legal for the coordinates of
a Rectangle to be negative.)
As you can tell even from this simple example, code that involves aliasing

can get confusing fast, and it can be very difficult to debug. In general, aliasing
should be avoided or used with care.

8.10 null

When you create an object variable, remember that you are creating a reference
to an object. Until you make the variable point to an object, the value of the
variable is null. null is a special value in Java (and a Java keyword) that is
used to mean “no object.”

8.11. GARBAGE COLLECTION 79

The declaration Point blank; is equivalent to this initialization

Point blank = null;

and is shown in the following state diagram:

blank

The value null is represented by a dot with no arrow.
If you try to use a null object, either by accessing an instance variable or

invoking a method, you will get a NullPointerException. The system will
print an error message and terminate the program.

Point blank = null;

int x = blank.x; // NullPointerException

blank.translate (50, 50); // NullPointerException

On the other hand, it is legal to pass a null object as an argument or receive
one as a return value. In fact, it is common to do so, for example to represent
an empty set or indicate an error condition.

8.11 Garbage collection

We have talked about what happens when more than one variable refers to the
same object. What happens when no variable refers to an object? For example:

Point blank = new Point (3, 4);

blank = null;

The first line creates a new Point object and makes blank refer to it. The
second line changes blank so that instead of referring to the object, it refers to
nothing (the null object).

blank

3x:

y: 4

If no one refers to an object, then no one can read or write any of its values,
or invoke a method on it. In effect, it ceases to exist. We could keep the object
in memory, but it would only waste space, so periodically as your program runs,
the Java system looks for stranded objects and reclaims them, in a process called

80 CHAPTER 8. OBJECTS AS CONTAINERS

garbage collection. Later, the memory space occupied by the object will be
available to be used as part of a new object.
You don’t have to do anything to make garbage collection work, and in

general you will not be aware of it.

8.12 Objects and primitives

There are two kinds of types in Java, primitive types and object types. Prim-
itives, like int and boolean begin with lower-case letters; object types begin
with upper-case letters. This distinction is useful because it reminds us of some
of the differences between them:

• When you declare a primitive variable, you get storage space for a prim-
itive value. When you declare an object variable, you get a space for a
reference to an object. In order to get space for the object itself, you have
to use the new command.

• If you don’t initialize a primitive type, it is given a default value that
depends on the type. For example, 0 for ints and true for booleans.
The default value for object types is null, which indicates no object.

• Primitive variables are well isolated in the sense that there is nothing you
can do in one method that will affect a variable in another method. Object
variables can be tricky to work with because they are not as well isolated.
If you pass a reference to an object as an argument, the method you invoke
might modify the object, in which case you will see the effect. The same
is true when you invoke a method on an object. Of course, that can be a
good thing, but you have to be aware of it.

There is one other difference between primitives and object types. You
cannot add new primitives to the Java language (unless you get yourself on the
standards committee), but you can create new object types! We’ll see how in
the next chapter.

8.13 Glossary

package: A collection of classes. The built-in Java classes are organized in
packages.

AWT: The Abstract Window Toolkit, one of the biggest and most commonly-
used Java packages.

instance: An example from a category. My cat is an instance of the category
“feline things.” Every object is an instance of some class.

instance variable: One of the named data items that make up an object. Each
object (instance) has its own copy of the instance variables for its class.

8.13. GLOSSARY 81

reference: A value that indicates an object. In a state diagram, a reference
appears as an arrow.

aliasing: The condition when two or more variables refer to the same object.

garbage collection: The process of finding objects that have no references
and reclaiming their storage space.

primitive type: Types in Java that begin with a lower case letter are primitive
types, which obey semantic rules that are different from object types.

82 CHAPTER 8. OBJECTS AS CONTAINERS

Chapter 9

Arrays

An array is a compound data structure where each element is identified by an
index. You can make an array of ints, doubles, or any other type, but all the
values in an array have to have the same type.

Syntactically, arrays types look like other Java types except they are followed
by []. For example, int[] is the type “array of integers” and double[] is the
type “array of doubles.”

You can declare variables with these types in the usual ways:

int[] count;

double[] values;

Until you initialize these variables, they are set to null. To create the array
itself, use the new command.

count = new int[4];

values = new double[size];

The first assignment makes count refer to an array of 4 integers; the second
makes values refer to an array of doubles. The number of elements in values

depends on size. You can use any integer expression as an array size.

The following figure shows how arrays are represented in state diagrams:

0 0 0 0

0 1 2 3
count

The large numbers inside the boxes are the elements of the array. The small
numbers outside the boxes are the indices used to identify each box. When you
allocate a new array of integers, the elements are initialized to zero.

83

84 CHAPTER 9. ARRAYS

9.1 Accessing elements

To store values in the array, use the [] operator. For example count[0] refers to
the “zeroeth” element of the array, and count[1] refers to the “oneth” element.
You can use the [] operator anywhere in an expression:

count[0] = 7;

count[1] = count[0] * 2;

count[2]++;

count[3] -= 60;

All of these are legal assignment statements. Here is the effect of this code
fragment:

0 1 2 3

7 1 -6014
count

The indices of an array start with 0. For perverse reasons, computer scien-
tists always start counting from zero. So, the four elements of this array are
numbered from 0 to 3, which means that there is no element with the index 4.
It is a common error to go beyond the bounds of an array, which will cause an

ArrayOutOfBoundsException. As with all exceptions, you get an error message
and the program quits.
You can use any expression as an index, as long as it has type int. One of

the most common ways to index an array is with a loop variable. For example:

int i = 0;

while (i < 4) {

System.out.println (count[i]);

i++;

}

This is a standard while loop that counts from 0 up to 4, and when the loop
variable i is 4, the condition fails and the loop terminates. Thus, the body of
the loop is only executed when i is 0, 1, 2 and 3.
Each time through the loop we use i as an index into the array, printing the

ith element. This type of array traversal is very common. Arrays and loops go
together like fava beans and a nice Chianti.

9.2 Copying arrays

When you copy an array variable, remember that you are copying a reference
to the array. For example:

9.3. FOR LOOPS 85

double[] a = new double [3];

double[] b = a;

This code creates one array of three doubles, and sets two different variables to
refer to it. This situation is a form of aliasing.

0 1 2
a

0.00.0 0.0

b

Any changes in either array will be reflected in the other. This is not usu-
ally the behavior you want; instead, you should make a copy of the array, by
allocating a new array and copying each element from one to the other.

double[] b = new double [3];

int i = 0;

while (i < 4) {

b[i] = a[i];

i++;

}

9.3 for loops

The loops we have written so far have a number of elements in common. All of
them start by initializing a variable; they have a test, or condition, that depends
on that variable; and inside the loop they do something to that variable, like
increment it.
This type of loop is so common that there is an alternate loop statement,

called for, that expresses it more concisely. The general syntax looks like this:

for (INITIALIZER; CONDITION; INCREMENTOR) {

BODY

}

This statement is exactly equivalent to

INITIALIZER;

while (CONDITION) {

BODY

INCREMENTOR

}

86 CHAPTER 9. ARRAYS

except that it is more concise and, since it puts all the loop-related statements
in one place, it is easier to read. For example:

for (int i = 0; i < 4; i++) {

System.out.println (count[i]);

}

is equivalent to

int i = 0;

while (i < 4) {

System.out.println (count[i]);

i++;

}

As an exercise, write a for loop to copy the elements of an array. As another
exercise, write a for loop that traverses an IntList.

9.4 Arrays and objects

In many ways, arrays behave like objects:

• When you declare an array variable, you get a reference to an array.

• You have to use the new command to create the array itself.

• When you pass an array as an argument, you pass a reference, which
means that the invoked method can change the contents of the array.

Some of the objects we have looked at, like Rectangles, are similar to arrays,
in the sense that they are named collection of values. This raises the question,
“How is an array of 4 integers different from a Rectangle object?”
If you go back to the definition of “array” at the beginning of the chapter,

you will see one difference, which is that the elements of an array are identified
by indices, whereas the elements (instance variables) of an object have names
(like x, width, etc.).
Another difference between arrays and objects is that all the elements of an

array have to be the same type. Although that is also true of Rectangles, many
objects have instance variables with different types,

9.5 Array length

Actually, arrays do have one named instance variable: length. Not surprisingly,
it contains the length of the array (number of elements). It is a good idea to
use this value as the upper bound of a loop, rather than a constant value. That
way, if the size of the array changes, you won’t have to go through the program
changing all the loops; they will work correctly for any size array.

9.6. RANDOM NUMBERS 87

for (int i = 0; i < a.length; i++) {

b[i] = a[i];

}

The last time the body of the loop gets executed, i is a.length - 1, which
is the index of the last element. When i is equal to a.length, the condition
fails and the body is not executed, which is a good thing, since it would cause
an exception. This code assumes that the array b contains at least as many
elements as a.
As an exercise, write a method called cloneArray that takes an array of

integers as a parameter, creates a new array that is the same size, copies the
elements from the first array into the new one, and then returns a reference to
the new array.

9.6 Random numbers

Most computer programs do the same thing every time they are executed, so
they are said to be deterministic. Usually, determinism is a good thing, since
we expect the same calculation to yield the same result. For some applications,
though, we would like the computer to be unpredictable. Games are an obvious
example, but there are many more.
Making a program truly nondeterministic turns out to be not so easy,

but there are ways to make it at least seem nondeterministic. One of them
is to generate random numbers and use them to determine the outcome of
the program. Java provides a built-in method that generates pseudorandom
numbers, which are not truly random in the mathematical sense, but for our
purposes, they will do.
Check out the documentation of the random method in the Math class. The

return value is a double between 0.0 and 1.0. Each time you invoke random you
get a different randomly-generated number. To see a sample, run this loop:

for (int i = 0; i < 10; i++) {

double x = Math.random ();

System.out.println (x);

}

To generate a random double between 0.0 and an upper bound like high, you
can multiply x by high. How would you generate a random number between
low and high? How would you generate a random integer?

9.7 Two-Dimensional Arrays

So far we have only looked at one-dimensional arrays—a sequence of elements
all of the same type. Well there’s no reason those elements can’t be arrays
themselves. An array of arrays is a two-dimensional array.

88 CHAPTER 9. ARRAYS

The syntax for a two-dimensional array is similar to the syntax for a one
dimensional array. For primitive types like integers, it looks like this:

int[][] array = new int[4][4];

The type of the variable array is int[][] which is pronounced “array of array
of ints.” This is not the same as the type int[] or the type int.

To assign one of the elements of the array, we use bracket operators.

array[0][0] = 7;

This stores the value 7 in the first column of the first row of the array. All the
other elements of the array are still zero.

Arrays of objects are similar. For example, points is an array of array of
points.

Point[][] points = new Point[3][4];

Here is a graphical representation of points. Notice that the object pointers
that make up the array are all null. That’s because we have only allocated the
array; we haven’t created any Point objects yet.

a

0

1

2

0 1 2 3

To assign one of the elements of the array, we use bracket operators.

points[2][3] = new Point (4, 5);

This sets the lowest, rightmost element of the array to refer to a newly-
minted Point object.

9.8. THE VECTOR CLASS 89

9.8 The Vector class

One of the problems with arrays is that their size is fixed. If you try to access
something past the end of an array, it causes a run-time error. So it is up to the
programmer to keep track of the size of the array and resize it when necessary.
Another problem is that all the elements of the array have to have the same

type. We can solve both of these problems by replacing the array with a Vector.
The Vector is a built-in Java class in the java.util package. The ele-

ments of a Vector can be any kind of Object, and you can mix different objects
within a single Vector. Also, Vectors resize themselves automatically as you add
elements.
The Vector class provides methods named get and set that are equivalent

to the bracket syntax we use to access the elements of an array. You should
review the other Vector operations by consulting the online documentation.
Before using the Vector class, you should understand a few concepts. Every

Vector has a capacity, which is the amount of space that has been allocated to
store values, and a size, which is the number of values that are actually in the
vector.
The following figure is a simple diagram of a Vector that contains three

elements, but it has a capacity of seven.

In general, it is your responsibility to make sure that the vector has sufficient
size before invoking set or get. If you try to access an element that does
not exist (in this case the elements with indices 3 through 6), you will get an
ArrayIndexOutOfBounds exception.
The Vector methods add and insert automatically increase the size of the

Vector, but set does not. The resize method adds null elements to the end
of the Vector to get to the given size.
Most of the time you don’t have to worry about capacity. Whenever the size

of the Vector changes, the capacity is updated automatically. For performance
reasons, some applications might want to take control of this function, which is
why there are additional methods for increasing and decreasing capacity.
Because we don’t have access to the implementation of a vector, it is not

clear how we should traverse one. Of course, one possibility is to use a loop
variable as an index into the vector:

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

}

There’s nothing wrong with that, but there is another way that serves to demon-
strate the Iterator class. Vectors provide a method named iterator that
returns an Iterator object that makes it possible to traverse the vector.

90 CHAPTER 9. ARRAYS

9.9 The Iterator class

Iterator is an abstract class in the java.util package. It specifies three
methods:

hasNext: Does this iteration have more elements?

next: Return the next element, or throw an exception if there is none.

remove: Remove from the collection the last element that was returned.

The following example uses an iterator to traverse and print the elements of
a vector.

Iterator iterator = v.iterator ();

while (iterator.hasNext ()) {

System.out.println (iterator.next ());

}

Once the Iterator is created, it is a separate object from the origi-
nal Vector. Subsequent changes in the Vector are not reflected in the
Iterator. In fact, if you modify the Vector after creating an Iterator, the
Iterator becomes invalid. If you access the Iterator again, it will cause a
ConcurrentModification exception.
Iterators make it possible to traverse a data structure without knowing the

details of its implementation. In fact, there are other Java classes that provide
Iterators; we can traverse any of them without even knowing what kind of object
we have.

9.10 Glossary

array: A named collection of values, where all the values have the same type,
and each value is identified by an index.

collection: Any data structure that contains a set of items or elements.

element: One of the values in an array. The [] operator selects elements of
an array.

index: An integer variable or value used to indicate an element of an array.

deterministic: A program that does the same thing every time it is invoked.

pseudorandom: A sequence of numbers that appear to be random, but which
are actually the product of a deterministic computation.

Chapter 10

Create your own objects

10.1 Class definitions and object types

In this chapter we will write class definitions that create new Java object types.
The most important ideas in this chapter are

• Defining a new class also creates a new object type with the same name.

• A class definition is like a template for objects: it determines what instance
variables the objects have and what methods can operate on them.

• Every object belongs to some object type; hence, it is an instance of some
class.

• When you invoke the new command to create an object, Java invokes a
special method called a constructor to initialize the instance variables.
You provide one or more constructors as part of the class definition.

• Typically all the methods that operate on a type go in the class definition
for that type.

Here are some syntax issues about class definitions:

• Class names (and hence object types) always begin with a capital letter,
which helps distinguish them from primitive types and variable names.

• You usually put one class definition in each file, and the name of the file
must be the same as the name of the class, with the suffix .java. For
example, the Time class is defined in the file named Time.java.

• In any program, one class is designated as the startup class. The startup
class must contain a method named main, which is where the execution of
the program begins. Another class may have a method named main, but
it will not be executed.

With those issues out of the way, let’s look at an example of a user-defined
type, Time.

91

92 CHAPTER 10. CREATE YOUR OWN OBJECTS

10.2 Time

A common motivation for creating a new Object type is to take several related
pieces of data and encapsulate them into an object that can be manipulated
(passed as an argument, operated on) as a single unit. We have already seen
two built-in types like this, Point and Rectangle.
Another example, which we will implement ourselves, is Time, which is used

to record the time of day. The various pieces of information that form a time
are the hour, minute and second. Because every Time object will contain these
data, we need to create instance variables to hold them.
The first step is to decide what type each variable should be. It seems clear

that hour and minute should be integers. Just to keep things interesting, let’s
make second a double, so we can record fractions of a second.
Instance variables are declared at the beginning of the class definition, out-

side of any method definition, like this:

class Time {

int hour, minute;

double second;

}

All by itself, this code fragment is a legal class definition. The state diagram
for a Time object would look like this:

0.0

0

0hour

minute

second

After declaring the instance variables, the next step is usually to define a
constructor for the new class.

10.3 Constructors

The usual role of a constructor is to initialize the instance variables. The syntax
for constructors is similar to that of other methods, with three exceptions:

• The name of the constructor is the same as the name of the class.

• Constructors have no return type and no return value.

• The keyword static is omitted.

10.4. MORE CONSTRUCTORS 93

Here is an example for the Time class:

public Time () {

this.hour = 0;

this.minute = 0;

this.second = 0.0;

}

Notice that where you would expect to see a return type, between public and
Time, there is nothing. That’s how we (and the compiler) can tell that this is a
constructor.
This constructor does not take any arguments, as indicated by the empty

parentheses (). Each line of the constructor initializes an instance variable to
an arbitrary default value (in this case, midnight). The name this is a special
keyword that is the name of the object we are creating. You can use this the
same way you use the name of any other object. For example, you can read and
write the instance variables of this, and you can pass this as an argument to
other methods.
But you do not declare this and you do not use new to create it. In fact,

you are not even allowed to make an assignment to it! this is created by the
system; all you have to do is store values in its instance variables.
A common error when writing constructors is to put a return statement at

the end. Resist the temptation.

10.4 More constructors

Constructors can be overloaded, just like other methods, which means that you
can provide multiple constructors with different parameters. Java knows which
constructor to invoke by matching the arguments of the new command with the
parameters of the constructors.
It is very common to have one constructor that takes no arguments (shown

above), and one constructor that takes a parameter list that is identical to the
list of instance variables. For example:

public Time (int hour, int minute, double second) {

this.hour = hour;

this.minute = minute;

this.second = second;

}

The names and types of the parameters are exactly the same as the names and
types of the instance variables. All the constructor does is copy the information
from the parameters to the instance variables.
If you go back and look at the documentation for Points and Rectangles,

you will see that both classes provide constructors like this. Overloading con-
structors provides the flexibility to create an object first and then fill in the
blanks, or to collect all the information before creating the object.

94 CHAPTER 10. CREATE YOUR OWN OBJECTS

So far this might not seem very interesting, and in fact it is not. Writing
constructors is a boring, mechanical process. Once you have written two, you
will find that you can churn them out in your sleep, just by looking at the list
of instance variables.

10.5 Creating a new object

Although constructors look like methods, you never invoke them directly. In-
stead, when you use the new command, the system allocates space for the new
object and then invokes your constructor to initialize the instance variables.

The following program demonstrates two ways to create and initialize Time
objects:

class Time {

int hour, minute;

double second;

public Time () {

this.hour = 0;

this.minute = 0;

this.second = 0.0;

}

public Time (int hour, int minute, double second) {

this.hour = hour;

this.minute = minute;

this.second = second;

}

public static void main (String[] args) {

// one way to create and initialize a Time object

Time t1 = new Time ();

t1.hour = 11;

t1.minute = 8;

t1.second = 3.14159;

System.out.println (t1);

// another way to do the same thing

Time t2 = new Time (11, 8, 3.14159);

System.out.println (t2);

}

}

As an exercise, figure out the flow of execution through this program.

10.6. PRINTING AN OBJECT 95

In main, the first time we invoke the new command, we provide no arguments,
so Java invokes the first constructor. The next few lines assign values to each
of the instance variables.

The second time we invoke the new command, we provide arguments that
match the parameters of the second constructor. This way of initializing the
instance variables is more concise (and slightly more efficient), but it can be
harder to read, since it is not as clear which values are assigned to which instance
variables.

10.6 Printing an object

The output of the previous program is:

Time@80cc7c0

Time@80cc807

When Java prints the value of a user-defined object type, it prints the name
of the type and a special hexadecimal (base 16) code that is unique for each
object. This code is not meaningful in itself; in fact, it can vary from machine
to machine and even from run to run. But it can be useful for debugging, in
case you want to keep track of individual objects.

In order to print objects in a way that is more meaningful to users you should
provide a method named toString that returns a String representation of the
object.

When you print an object using print or println, Java checks to see
whether you have provided toString, and if so it invokes it. If not, it invokes
a default version of toString that produces the output we just saw.

public String toString () {

return hour + ":" + minute + ":" + second;

}

The output of this method, if we print either t1 or t2, is 11:8:3.14159. Al-
though this is recognizable as a time, it is not quite in the standard format.
For example, if the number of minutes or seconds is less than 10, we expect a
leading 0 as a place-keeper. Also, we might want to drop the decimal part of
the seconds. In other words, we want something like 11:08:03.

In most languages, there are simple ways to control the output format for
numbers. In Java there are no simple ways.

Java provides very powerful tools for printing formatted things like times
and dates, and also for interpreting formatted input. Unfortunately, these tools
are not very easy to use, so I am going to leave them out of this book. If you
want, though, you can take a look at the documentation for the Date class in
the java.util package.

96 CHAPTER 10. CREATE YOUR OWN OBJECTS

10.7 Operations on objects

Even though we can’t print times in an optimal format, we can still write meth-
ods that manipulate Time objects. In the next few sections, I will demonstrate
several of the possible interfaces for methods that operate on objects. For some
operations, you will have a choice of several possible interfaces, so you should
consider the pros and cons of each:

pure function: Takes objects and/or primitives as arguments but does not
modify the objects. The return value is either a primitive or a new object
created inside the method.

modifier: Takes objects as arguments and modifies some or all of them. Often
returns void.

10.8 Pure functions

A method is considered a pure function if the result depends only on the ar-
guments, and it has no side effects like modifying an argument or printing
something. The only result of invoking a pure function is the return value.
One example is after, which compares the current time, this, to another

time that is provided as a parameter. It returns a boolean that indicates
whether the current time comes after the parameter:

public boolean after (Time t2) {

if (hour > t2.hour) return true;

if (hour < t2.hour) return false;

if (minute > t2.minute) return true;

if (minute < t2.minute) return false;

if (second > t2.second) return true;

return false;

}

What is the result of this method if the two times are equal? Does that seem like
the appropriate result for this method? If you were writing the documentation
for this method, would you mention that case specifically?
A second example is add, which calculates the sum of the current time and

another time provided as a parmeter. For example, if it is 9:14:30, and your
breadmaker takes 3 hours and 35 minutes, you could use addTime to figure out
when the bread will be done.
Here is a rough draft of this method that is not quite right:

public Time add (Time t2) {

Time sum = new Time ();

sum.hour = hour + t2.hour;

10.8. PURE FUNCTIONS 97

sum.minute = minute + t2.minute;

sum.second = second + t2.second;

return sum;

}

Although this method returns a Time object, it is not a constructor. You should
go back and compare the syntax of a method like this with the syntax of a
constructor, because it is easy to get confused.
Here is an example of how to use this method. If currentTime contains

the current time and breadTime contains the amount of time it takes for your
breadmaker to make bread, then you could use addTime to figure out when the
bread will be done.

Time currentTime = new Time (9, 14, 30.0);

Time breadTime = new Time (3, 35, 0.0);

Time doneTime = currentTime.add (breadTime);

printTime (doneTime);

The output of this program is 12:49:30.0, which is correct. On the other hand,
there are cases where the result is not correct. Can you think of one?
The problem is that this method does not deal with cases where the number

of seconds or minutes adds up to more than 60. In that case, we have to
“carry” the extra seconds into the minutes column, or extra minutes into the
hours column.
Here’s a second, corrected version of this method.

public Time add (Time t2) {

Time sum = new Time ();

sum.hour = hour + t2.hour;

sum.minute = minute + t2.minute;

sum.second = second + t2.second;

if (sum.second >= 60.0) {

sum.second -= 60.0;

sum.minute += 1;

}

if (sum.minute >= 60) {

sum.minute -= 60;

sum.hour += 1;

}

return sum;

}

Although this version is correct, it’s starting to get big. Later, I will suggest an
alternate approach to this problem that will be much shorter.
This code demonstrates two operators we have not seen before, += and -=.

These operators provide a concise way to increment and decrement variables.

98 CHAPTER 10. CREATE YOUR OWN OBJECTS

They are similar to ++ and --, except (1) they work on doubles as well as ints,
and (2) the amount of the increment does not have to be 1. The statement
sum.second -= 60.0; is equivalent to sum.second = sum.second - 60;

10.9 Modifiers

As an example of a modifier, consider increment, which adds a given number
of seconds to a Time object. Again, a rough draft of this method looks like:

public void increment (double secs) {

second += secs;

if (second >= 60.0) {

second -= 60.0;

minute += 1;

}

if (minute >= 60) {

minute -= 60;

hour += 1;

}

}

The first line performs the basic operation; the remainder deals with the same
cases we saw before.

Is this method correct? What happens if the argument secs is much greater
than 60? In that case, it is not enough to subtract 60 once; we have to keep
doing it until second is below 60. We can do that by simply replacing the if
statements with while statements:

public void increment (double secs) {

second += secs;

while (second >= 60.0) {

second -= 60.0;

minute += 1;

}

while (minute >= 60) {

minute -= 60;

hour += 1;

}

}

This solution is correct, but not very efficient. Can you think of a solution that
does not require iteration?

10.10. WHICH IS BEST? 99

10.10 Which is best?

Anything that can be done with modifiers can also be done with pure functions.
In fact, there are programming languages, called functional programming lan-
guages, that only allow pure functions. Some programmers believe that pro-
grams that use pure functions are faster to develop and less error-prone than
programs that use modifiers. Nevertheless, there are times when modifiers are
convenient, and some cases where functional programs are less efficient.
In general, I recommend that you write pure functions whenever it is rea-

sonable to do so, and resort to modifiers only if there is a compelling advantage.
This approach might be called a functional programming style.

10.11 Incremental development vs. planning

In this chapter I have demonstrated an approach to program development I
refer to as rapid prototyping with iterative improvement. In each case,
I wrote a rough draft (or prototype) that performed the basic calculation, and
then tested it on a few cases, correcting flaws as I found them.
Although this approach can be effective, it can lead to code that is unnec-

essarily complicated—since it deals with many special cases—and unreliable—
since it is hard to convince yourself that you have found all the errors.
An alternative is high-level planning, in which a little insight into the prob-

lem can make the programming much easier. In this case the insight is that a
Time is really a three-digit number in base 60! The second is the “ones column,”
the minute is the “60’s column”, and the hour is the “3600’s column.”
When we wrote add and increment, we were effectively doing addition in

base 60, which is why we had to “carry” from one column to the next.
Thus an alternate approach to the whole problem is to convert Times into

doubles and take advantage of the fact that the computer already knows how
to do arithmetic with doubles. Here is a method that converts a Time into a
double:

public double convertToSeconds () {

int minutes = hour * 60 + minute;

double seconds = minutes * 60 + second;

return seconds;

}

Now all we need is a way to convert from a double to a Time object. We could
write a method to do it, but it might make more sense to write it as a third
constructor:

public Time (double secs) {

this.hour = (int) (secs / 3600.0);

secs -= this.hour * 3600.0;

this.minute = (int) (secs / 60.0);

100 CHAPTER 10. CREATE YOUR OWN OBJECTS

secs -= this.minute * 60;

this.second = secs;

}

This constructor is a little different from the others, since it involves some
calculation along with assignments to the instance variables.
You might have to think a bit to convince yourself that the technique I

am using to convert from one base to another is correct. Assuming you are
convinced, we can use these methods to rewrite add:

public Time add (Time t2) {

double seconds = this.convertToSeconds () + t2.convertToSeconds ();

return new Time (seconds);

}

This is much shorter than the original version, and it is much easier to demon-
strate that it is correct (assuming, as usual, that the methods it invokes are
correct). As an exercise, rewrite increment the same way.

10.12 Generalization

In some ways converting from base 60 to base 10 and back is harder than just
dealing with times. Base conversion is more abstract; our intuition for dealing
with times is better.
But if we have the insight to treat times as base 60 numbers, and make

the investment of writing the conversion methods (convertToSeconds and the
third constructor), we get a program that is shorter, easier to read and debug,
and more reliable.
It is also easier to add more features later. For example, imagine subtracting

two Times to find the duration between them. The naive approach would be
to implement subtraction complete with “borrowing.” Using the conversion
methods would be much easier.
Ironically, sometimes making a problem harder (more general) makes is eas-

ier (fewer special cases, fewer opportunities for error).

10.13 Algorithms

When you write a general solution for a class of problems, as opposed to a specific
solution to a single problem, you have written an algorithm. I mentioned this
word in Chapter 1, but did not define it carefully. It is not easy to define, so I
will try a couple of approaches.
First, consider some things that are not algorithms. For example, when you

learned to multiply single-digit numbers, you probably memorized the multipli-
cation table. In effect, you memorized 100 specific solutions, so that knowledge
is not really algorithmic.

10.14. GLOSSARY 101

But if you were “lazy,” you probably cheated by learning a few tricks. For
example, to find the product of n and 9, you can write n − 1 as the first digit
and 10−n as the second digit. This trick a general solution for multiplying any
single-digit number by 9. That’s an algorithm!
Similarly, the techniques you learned for addition with carrying, subtraction

with borrowing, and long division are all algorithms. One of the characteristics
of algorithms is that they do not require any intelligence to carry out. They
are mechanical processes in which each step follows from the last according to
a simple set of rules.
In my opinion, it is embarrassing that humans spend so much time in school

learning to execute algorithms that, quite literally, require no intelligence.
On the other hand, the process of designing algorithms is interesting, intel-

lectually challenging, and a central part of what we call programming.
Some of the things that people do naturally, without difficulty or conscious

thought, are the most difficult to express algorithmically. Understanding natural
language is a good example. We all do it, but so far no one has been able to
explain how we do it, at least not in the form of an algorithm.
Later you will have the opportunity to design simple algorithms for a variety

of problems.

10.14 Glossary

class: Previously, I defined a class as a collection of related methods. In this
chapter we learned that a class definition is also a template for a new type
of object.

instance: A member of a class. Every object is an instance of some class.

constructor: A special method that initializes the instance variables of a
newly-constructed object.

project: A collection of one or more class definitions (one per file) that make
up a program.

startup class: The class that contains the main method where execution of
the program begins.

function: A method whose result depends only on its parameters, and that
has no side-effects other than returning a value.

functional programming style: A style of program design in which the ma-
jority of methods are functions.

modifier: A method that changes one or more of the objects it receives as
parameters, and usually returns void.

algorithm: A set of instructions for solving a class of problems by a mechanical,
unintelligent process.

102 CHAPTER 10. CREATE YOUR OWN OBJECTS

Chapter 11

Data abstraction and
Graphics

11.1 The BankAccount class

Suppose we want to create a class of objects to represent bank accounts.

The first question to ask is what information to store in the BankAccount
object. In other words, what instance variables should an account have?

As a simple example, we will define a BankAccount object with a String
for the customer’s name and three doubles for the balance in the checking and
savings accounts and the total balance.

The next question to ask is what operations we might want for this class.
Here are some basic operations that are pretty likely.

Create an account: initialize the instance variables.

Make a deposit: add money to one of the accounts.

Make a withdrawal: deduct money from one of the accounts.

Get a balance: return the current balance of one of the accounts, or the total.

Get the name: return the bank account owner’s name.

These operations guide our decisions about what methods the BankAccount
object will support.

11.1.1 The class definition

Since we know what the instance variables are, the initial class definition is
straightforward.

103

104 CHAPTER 11. DATA ABSTRACTION AND GRAPHICS

class BankAccount {

private String name;

private double checking;

private double savings;

private double total;

}

All the instance variables are private, which means that they cannot be accessed
from outside this class definition. From any other class, the only way to access
these variables is through the methods we will provide.
We’ll see in a minute why that might be a good thing.

11.1.2 Constructors

Once you have written the instance variables, writing a constructor is pretty
much a mechanical process.

public BankAccount (String name, double checking, double savings) {

this.name = name;

this.checking = checking;

this.savings = savings;

this.total = checking + savings;

}

As usual, the list of parameters looks a lot like the list of instance variables, and
most of what the constructor does is copy the values provided as arguments into
the object. The only interesting thing is that we have to compute the total.

11.1.3 Accessor Methods

Since the instance variables are private, we have to provide methods that allow
other classes to obtain the values we want them to obtain. These methods are
called accessor methods. First we will write the “get” methods. Generating
them is pretty much a mechanical process.

public String getName () {

return name;

}

public double getChecking () {

return checking;

}

public double getSavings () {

return savings;

}

11.1. THE BANKACCOUNT CLASS 105

public double getTotal () {

return total;

}

You might be wondering why we bothered making these variables private if we
were planning to let people read them anyway.
The answer is that accessor methods make it possible to restrict operations

that should not be performed. For example, we probably want to make it
impossible to change the name on the account. Also, we shouldn’t let anyone
change total directly; instead, total should get updated whenever checking
or savings gets updated. Finally, we want to allow deposits and withdrawals,
but we might not want to make it possible to set the balance of the accounts
directly.
So the only methods we’ll provide for changing the instance variables are

updateChecking and updateSavings:

public void updateChecking (double amount) {

checking += amount;

total += amount;

}

public void updateSavings (double amount) {

savings += amount;

total += amount;

}

You might have been expecting different methods for deposits and withdrawals,
but that’s unnecessary. A withdrawal is just a deposit with a negative amount.
One of the advantages of private variables and accessor methods is that we

can choose which operations to allow and which to forbid.
Another advantage is that we can maintain the consistency of objects. In

general, the definition of consistency depends on what kind of objects you are
talking about. For a bank account, consistency means that the value of total
should be the sum of checking and savings. If it is not, something has gone
horribly wrong, and it is likely to cause a problem at some point (like when the
auditors come).
In this case we can prove that total can never be wrong, because it was

correct when we constructed the object, and all the update methods update
total correctly. Since no other classes can access these variables, there is no
way for them to mess up the system. If the instance variables were public, we
would have to find every place in the program that updates BankAccounts to
be sure that they maintain consistency.
A third advantage is that we can add code to the accessor methods to check

for errors or special conditions. In the example, we might want the update
commands to check for overdrafts:

public void updateSavings (double amount) {

106 CHAPTER 11. DATA ABSTRACTION AND GRAPHICS

if (savings + amount < 0) {

handleOverdraft ();

return;

}

savings += amount;

total += amount;

}

If performing the update would make the balance negative, we invoke an imag-
inary method that handles overdrafts and then return without performing the
update.

11.2 Data Abstraction

The final advantage of this style of programming is that it provides data ab-
straction, which means that the other classes that use these methods don’t
know anything about how the data is represented.
This abstraction makes it possible to change the details of the implementa-

tion without affecting other parts of the program. For example, if it turns out
that bank accounts take up too much space (assuming there are a lot of them),
we might want to save a few bytes by getting rid of the instance variable total.
All we have to do is delete total from the program everywhere it appears

(which actually makes the update methods smaller and faster), and then change
the implementation of getTotal:

public double getTotal () {

return checking + savings;

}

The new version of the program is smaller, more likely to be correct (since we
don’t have to worry about consistency), and probably faster, since we only have
to compute the total if someone asks, not every time there is an update.
Even more importantly, because of data abstraction, we could switch from

one representation to the other and no one would ever know! The contract for
the BankAccount class never changed. This flexibility is particularly important
for large software projects where different programmers might be working on
different parts of the program. Data abstraction allows these groups to work
independently without creating problems for each other.

11.3 Applets

We have been writing and modifying Java Applets all semester, but we haven’t
seen much about how they work.
The Applet class is a build-in Java class that defines the basic operations

that all Applets perform. It is defined in the java.applet package.

11.4. THE PAINT METHOD 107

To create a new Applet, you have to import java.applet.Applet and create
a new class that extends Applet.

import java.awt.*;

import java.applet.Applet;

public class GraphicsWorld extends Applet {

}

In this case we also import the AWT, so we can use the methods in the Graphics
class.

The Applet class defines four methods that are invoked automatically when
the Applet runs:

init: invoked when the applet is loaded, init performs any initialization the
applet requires.

start: invoked when the applet starts running.

stop: invoked whenever the applet stops, usually when the window closes.

paint: invoked when the applet starts, and then invoked again whenever the
applet needs to redraw the window.

We define the behavior of a new applet by overriding one or more of these
methods.

11.4 The paint method

For the examples we will look at, there’s no need to override init, start or
stop. We’ll stick with the default implementation, which does nothing.

But we will override paint. The paint method we provide has to take a
Graphics object as a parameter and return void.

public void paint (Graphics g) {

System.out.println ("paint invoked");

}

In this case, all the method does is display a message in the console to indicate
that it has been invoked.

The Graphics object you get as a parameter makes it possible to draw basic
two-dimensional shapes in your Applet.

108 CHAPTER 11. DATA ABSTRACTION AND GRAPHICS

11.5 Drawing

To draw things on the screen, you invoke methods on the graphics object.

g.setColor (Color.black);

g.drawOval (x, y, width, height);

setColor changes the current color, in this case to black. Everything that gets
drawn will be black, until we use setColor again.

drawOval takes four integers as arguments. These arguments specify a
bounding box, which is the rectangle in which the oval will be drawn (as
shown in the figure). The bounding box itself is not drawn; only the oval is.
The bounding box is like a guideline. Bounding boxes are always oriented hor-
izontally or vertically; they are never at a funny angle.

bounding box

inscribed oval

If you think about it, there are lots of ways to specify the location and size
of a rectangle. You could give the location of the center or any of the corners,
along with the height and width. Or, you could give the location of opposing
corners. The choice is arbitrary, but in any case it will require the same number
of parameters: four.

By convention, the usual way to specify a bounding box is to give the location
of the upper-left corner and the width and height. The usual way to specify a
location is to use a coordinate system.

11.6 Coordinates

You are probably familiar with Cartesian coordinates in two dimensions, in
which each location is identified by an x-coordinate (distance along the x-axis)
and a y-coordinate. By convention, Cartesian coordinates increase to the right
and up, as shown in the figure.

11.7. A LAME MICKEY MOUSE 109

positive y

negative y

Cartesian coordinates

positive x

origin (0, 0)

negative x

Java graphical coordinates

positive y

positive x

origin (0, 0)

Annoyingly, it is conventional for computer graphics systems to use a vari-
ation on Cartesian coordinates in which the origin is in the upper-left corner
of the screen or window, and the direction of the positive y-axis is down. Java
follows this convention.
The unit of measure is called a pixel; a typical screen is about 1000 pixels

wide. Coordinates are always integers. If you want to use a floating-point value
as a coordinate, you have to round it off to an integer.

11.7 A lame Mickey Mouse

Let’s say we want to draw a picture of Mickey Mouse. We can use the oval we
just drew as the face, and then add ears. Before we do that it is a good idea
to break the program up into two methods. paint finds the dimensions of the
Applet window and draw does the actual drawing.

public void paint (Graphics g) {

setBackground (Color.white);

Rectangle r = g.getClipBounds ();

draw (g, r.x, r.y, r.width, r.height);

}

public void draw (Graphics g, int x, int y, int width, int height) {

g.drawOval (x, y+height/4, width, 2*height/3);

g.drawOval (x, y, width/3, height/3);

g.drawOval (x+2*width/3, y, width/3, height/3);

}

setBackground sets the background color to white. getClipBounds gets a
Rectangle from the Graphics object that indicates the position and size of the
region we can draw on. I doesn’t cause an error if we draw outside the bounds,
but the excess gets clipped.

110 CHAPTER 11. DATA ABSTRACTION AND GRAPHICS

The parameters for draw are the Graphics object and a bounding box. draw
invokes drawOval three times, to drawMickey’s face and two ears. The following
figure shows the bounding boxes for the ears.

2*height/3

bounding box of face

(x, y)

height/3

width/3 width/3

height/3

bounding box of left ear

(x+2*width/3, y)

bounding box of right ear

width

(x, y+width/4)

The coordinates of the bounding boxes are all relative to the location (x
and y) and size (width and height) of the original bounding box. As a result,
we can use draw to draw a Mickey Mouse (albeit a lame one) anywhere on the
screen in any size. As an exercise, modify the arguments passed to draw so that
Mickey is one half the height and width of the screen, and centered.

11.8 Other drawing commands

Other drawing commands include

drawRect (int x, int y, int width, int height)

which draws a rectangle with the given bounding box, and

drawLine (int x1, int y1, int x2, int y2)

which draws a line from the point (x1, y1) to the point (x2, y2).
One other command you might want to try is

drawRoundRect (int x, int y, int width, int height,

int arcWidth, int arcHeight)

The first four parameters specify the bounding box of the rectangle; the remain-
ing two parameters indicate how rounded the corners should be, specifying the
horizontal and vertical diameter of the arcs at the corners.
There are also “fill” versions of these commands, that not only draw the

outline of a shape, but also fill it in. The interfaces are identical; only the
names have been changed:

11.9. A FRACTAL MICKEY MOUSE 111

fillOval (int x, int y, int width, int height)

fillRect (int x, int y, int width, int height)

fillRoundRect (int x, int y, int width, int height,

int arcWidth, int arcHeight)

There is no such thing as fillLine—it just doesn’t make sense.

11.9 A fractal Mickey Mouse

If you write recursive graphical methods, you often get interesting shapes called
fractals. To draw a simple fractal we can write a version of draw so that it
calls itself recursively:

public void draw (Graphics g, int x, int y, int width, int height) {

if (height == 0) return;

g.drawOval (x, y, width, height);

draw (g, x, y, width/2, height/2);

draw (g, x+width/2, y, width/2, height/2);

}

The first line is the base case of the recursion. It checks whether the height is
equal to zero, and if it is, it returns immediately without drawing any circles,
and without making any recursive calls. Otherwise we would just draw smaller
and smaller circles and eventually get a StackOverflowException.

The recursive step draws one oval and makes two recursive invocations. The
first draw command draws a circle the size of the given bounding box. The two
recursive calls use bounding boxes that are half the size of the original. One is
in the upper left corner; the other is in the upper right.

The output of this program looks like this:

112 CHAPTER 11. DATA ABSTRACTION AND GRAPHICS

11.10 Glossary

accessor method: A method provided to get or set the value of an instance
variable, usually from another class definition.

consistency: A property of an object that should be maintained as operations
update the state of the object.

data abstraction: A form of modularity in which the users of a class don’t see
the implementation details of the class, especially the instance variables.

bounding box: An abstract rectangle (not drawn) that represents the bound-
aries of a graphical figure.

coordinate system: A way of denoting points in space relative to an origin.

pixel: A “picture element,” used as a unit of measure for graphical operations.

fractal: An image that is defined recursively, so that part of the picture looks
like a scaled down version of the whole.

Chapter 12

Strings and things

There are quite a few methods the operate on Strings, documented in the
String API.
The first method we will look at here is charAt, which allows you to extract

letters from a String. In order to store the result, we need a variable type that
can store individual letters (as opposed to strings). Individual letters are called
characters, and the variable type that stores them is called char.

chars work just like the other types we have seen:

char fred = ’c’;

if (fred == ’c’) {

System.out.println (fred);

}

Character values appear in single quotes (’c’). Unlike string values (which
appear in double quotes), character values can contain only a single letter.
Here’s how the charAt method is used:

String fruit = "banana";

char letter = fruit.charAt(1);

System.out.println (letter);

The syntax fruit.charAt indicates that I am invoking the charAt method on
the object named fruit. I am passing the argument 1 to this method, which
indicates that I would like to know the first letter of the string. The result is a
character, which is stored in a char named letter. When I print the value of
letter, I get a surprise:

a

a is not the first letter of "banana". Unless you are a computer scientist. For
perverse reasons, computer scientists always start counting from zero. The 0th
letter (“zeroeth”) of "banana" is b. The 1th letter (“oneth”) is a and the 2th
(“twoeth”) letter is n.

113

114 CHAPTER 12. STRINGS AND THINGS

If you want the the zereoth letter of a string, you have to pass zero as an
argument:

char letter = fruit.charAt(0);

12.1 Length

The second String method we’ll look at is length, which returns the number
of characters in the string. For example:

int length = fruit.length();

length takes no arguments,as indicated by (), and returns an integer, in this
case 6. Notice that it is legal to have a variable with the same name as a method
(although it can be confusing for human readers).
To find the last letter of a string, you might be tempted to try something

like

int length = fruit.length();

char last = fruit.charAt (length); // WRONG!!

That won’t work. The reason is that there is no 6th letter in "banana". Since
we started counting at 0, the 6 letters are numbered from 0 to 5. To get the
last character, you have to subtract 1 from length.

int length = fruit.length();

char last = fruit.charAt (length-1);

12.2 Traversal

A common thing to do with a string is start at the beginning, select each char-
acter in turn, do something to it, and continue until the end. This pattern of
processing is called a traversal. A natural way to encode a traversal is with a
while statement:

int index = 0;

while (index < fruit.length()) {

char letter = fruit.charAt (index);

System.out.println (letter);

index = index + 1;

}

This loop traverses the string and prints each letter on a line by itself. Notice
that the condition is index < fruit.length(), which means that when index
is equal to the length of the string, the condition is false and the body of the
loop is not executed. The last character we access is the one with the index
fruit.length()-1.

12.3. RUN-TIME ERRORS 115

The name of the loop variable is index. An index is a variable or value
used to specify one member of an ordered set (in this case the set of characters
in the string). The index indicates (hence the name) which one you want. The
set has to be ordered so that each letter has an index and each index refers to
a single character.

As an exercise, write a method that takes a String as an argument and that
prints the letters backwards, all on one line.

12.3 Run-time errors

Way back in Section 1.4.2 I talked about run-time errors, which are errors that
don’t appear until a program has started running. In Java run-time errors are
called exceptions.

If you use the charAt command and you provide an index that is neg-
ative or greater than length-1, you will get an exception: specifically, a
StringIndexOutOfBoundsException. Try it and see how it looks.

If your program causes an exception, it prints an error message indicating
the type of exception and where in the program it occurred. Then the program
terminates.

12.4 Reading documentation

The documentation for charAt looks like this:

public char charAt(int index)

Returns the character at the specified index.

An index ranges from 0 to length() - 1.

Parameters: index - the index of the character.

Returns: the character at the specified index of this string.

The first character is at index 0.

Throws: StringIndexOutOfBoundsException if the index is out of range.

The first line is the method’s prototype (see Section 11.8), which indicates the
name of the method, the type of the parameters, and the return type.

The next line describes what the method does. The next two lines explain the
parameters and return values. In this case the explanations are a bit redundant,
but the documentation is supposed to fit a standard format. The last line
explains what exceptions, if any, can be caused by this method.

116 CHAPTER 12. STRINGS AND THINGS

12.5 The indexOf method

In some ways, indexOf is the opposite of charAt. charAt takes an index and
returns the character at that index. indexOf takes a character and finds the
index where that character appears.

charAt fails if the index is out of range, and causes an exception. indexOf
fails if the character does not appear in the string, and returns the value -1.

String fruit = "banana";

int index = fruit.indexOf(’a’);

This finds the index of the letter ’a’ in the string. In this case, the letter
appears three times, so it is not obvious what indexOf should do. According to
the documentation, it returns the index of the first appearance.
In order to find subsequent appearances, there is an alternate version of

indexOf (for an explanation of this kind of overloading, see Section 10.4). It
takes a second argument that indicates where in the string to start looking. If
we invoke

int index = fruit.indexOf(’a’, 2);

it will start at the twoeth letter (the first n) and find the second a, which is at
index 3. If the letter happens to appear at the starting index, the starting index
is the answer. Thus,

int index = fruit.indexOf(’a’, 5);

returns 5. Based on the documentation, it is a little tricky to figure out what
happens if the starting index is out of range:

indexOf returns the index of the first occurrence of the character
in the character sequence represented by this object that is greater
than or equal to fromIndex, or -1 if the character does not occur.

One way to figure out what this means is to try out a couple of cases. Here
are the results of my experiments:

• If the starting index is greater than or equal to length(), the result is -1,
indicating that the letter does not appear at any index greater than the
starting index.

• If the starting index is negative, the result is 1, indicating the first ap-
pearance of the letter at an index greater than the starting index.

If you go back and look at the documentation, you’ll see that this behavior is
consistent with the definition, even if it was not immediately obvious. Now that
we have a better idea how indexOf works, we can use it as part of a program.

12.6. LOOPING AND COUNTING 117

12.6 Looping and counting

The following program counts the number of times the letter ’a’ appears in a
string:

String fruit = "banana";

int length = fruit.length();

int count = 0;

int index = 0;

while (index < length) {

if (fruit.charAt(index) == ’a’) {

count = count + 1;

}

index = index + 1;

}

System.out.println (count);

This program demonstrates a common idiom, called a counter. The variable
count is initialized to zero and then incremented each time we find an ’a’ (to
increment is to increase by one; it is the opposite of decrement, and unrelated
to excrement, which is a noun). When we exit the loop, count contains the
result: the total number of a’s.

As an exercise, encapsulate this code in a method named countLetters,
and generalize it so that it accepts the string and the letter as arguments.
As a second exercise, rewrite the method so that it uses indexOf to locate

the a’s, rather than checking the characters one by one.

12.7 Increment and decrement operators

Incrementing and decrementing are such common operations that Java provides
special operators for them. The ++ operator adds one to the current value of an
int or char. -- subtracts one. Neither operator works on doubles, booleans
or Strings.

Technically, it is legal to increment a variable and use it in an expression at
the same time. For example, you might see something like:

System.out.println (i++);

Looking at this, it is not clear whether the increment will take effect before or
after the value is printed. Because expressions like this tend to be confusing, I
would discourage you from using them. In fact, to discourage you even more,
I’m not going to tell you what the result is. If you really want to know, you can
try it.
Using the increment operators, we can rewrite the letter-counter:

118 CHAPTER 12. STRINGS AND THINGS

int index = 0;

while (index < length) {

if (fruit.charAt(index) == ’a’) {

count++;

}

index++;

}

It is a common error to write something like

index = index++; // WRONG!!

Unfortunately, this is syntactically legal, so the compiler will not warn you. The
effect of this statement is to leave the value of index unchanged. This is often
a difficult bug to track down.
Remember, you can write index = index +1;, or you can write index++;,

but you shouldn’t mix them.

12.8 Character arithmetic

It may seem odd, but you can do arithmetic with characters! The expression
’a’ + 1 yields the value ’b’. Similarly, if you have a variable named letter

that contains a character, then letter - ’a’ will tell you where in the alphabet
it appears (keeping in mind that ’a’ is the zeroeth letter of the alphabet and ’z’
is the 25th).
This sort of thing is useful for converting between the characters that contain

numbers, like ’0’, ’1’ and ’2’, and the corresponding integers. They are not the
same thing. For example, if you try this

char letter = ’3’;

int x = (int) letter;

System.out.println (x);

you might expect the value 3, but depending on your environment, you might
get 51, which is the ASCII code that is used to represent the character ’3’, or
you might get something else altogether. To convert ’3’ to the corresponding
integer value you can subtract ’0’:

int x = (int)(letter - ’0’);

Technically, in both of these examples the typecast ((int)) is unnecessary, since
Java will convert type char to type int automatically. I included the typecasts
to emphasize the difference between the types, and because I’m a stickler about
that sort of thing.
Since this conversion can be a little ugly, it is preferable to use the digit

method in the Character class. For example:

12.9. STRINGS ARE IMMUTABLE 119

int x = Character.digit (letter, 10);

converts letter to the corresponding digit, interpreting it as a base 10 number.
Another use for character arithmetic is to loop through the letters of the

alphabet in order. For example, in Robert McCloskey’s book Make Way for

Ducklings, the names of the ducklings form an abecedarian series: Jack, Kack,
Lack, Mack, Nack, Ouack, Pack and Quack. Here is a loop that prints these
names in order:

char letter = ’J’;

while (letter <= ’Q’) {

System.out.println (letter + "ack");

letter++;

}

Notice that in addition to the arithmetic operators, we can also use the condi-
tional operators on characters. The output of this program is:

Jack

Kack

Lack

Mack

Nack

Oack

Pack

Qack

Of course, that’s not quite right because I’ve misspelled “Ouack” and “Quack.”
As an exercise, modify the program to correct this error.

12.8.1 Typecasting for experts

Here’s a puzzler: normally, the statement x++ is exactly equivalent to x = x +

1. Unless x is a char! In that case, x++ is legal, but x = x + 1 causes an error.
Try it out and see what the error message is, then see if you can figure out

what is going on.

12.9 Strings are immutable

As you look over the documentation of the String methods, you might notice
toUpperCase and toLowerCase. These methods are often a source of confusion,
because it sounds like they have the effect of changing (or mutating) an existing
string. Actually, neither these methods nor any others can change a string,
because strings are immutable.
When you invoke toUpperCase on a String, you get a new String as a

return value. For example:

120 CHAPTER 12. STRINGS AND THINGS

String name = "Alan Turing";

String upperName = name.toUpperCase ();

After the second line is executed, upperName contains the value "ALAN TURING",
but name still contains "Alan Turing".

12.10 Strings are incomparable

It is often necessary to compare strings to see if they are the same, or to see
which comes first in alphabetical order. It would be nice if we could use the
comparison operators, like == and >, but we can’t.
In order to compare Strings, we have to use the equals and compareTo

methods. For example:

String name1 = "Alan Turing";

String name2 = "Ada Lovelace";

if (name1.equals (name2)) {

System.out.println ("The names are the same.");

}

int flag = name1.compareTo (name2);

if (flag == 0) {

System.out.println ("The names are the same.");

} else if (flag < 0) {

System.out.println ("name1 comes before name2.");

} else if (flag > 0) {

System.out.println ("name2 comes before name1.");

}

The syntax here is a little weird. To compare two things, you have to invoke a
method on one of them and pass the other as an argument.
The return value from equals is straightforward enough; true if the strings

contain the same characters, and false otherwise.
The return value from compareTo is a little odd. It is the difference between

the first characters in the strings that differ. If the strings are equal, it is 0.
If the first string (the one on which the method is invoked) comes first in the
alphabet, the difference is negative. Otherwise, the difference is positive. In this
case the return value is positive 8, because the second letter of “Ada” comes
before the second letter of “Alan” by 8 letters.
Using compareTo is often tricky, and I never remember which way is which

without looking it up, but the good news is that the interface is pretty standard
for comparing many types of objects, so once you get it you are all set.
Just for completeness, I should admit that it is legal, but very seldom correct,

to use the == operator with Strings. But what that means will not make sense
until later, so for now, don’t do it.

12.11. GLOSSARY 121

12.11 Glossary

object: A collection of related data that comes with a set of methods that
operate on it.

index: A variable or value used to select one of the members of an ordered set,
like a character from a string.

traverse: To iterate through all the elements of a set performing a similar
operation on each.

counter: A variable used to count something, usually initialized to zero and
then incremented.

increment: Increase the value of a variable by one. The increment operator in
Java is ++.

decrement: Decrease the value of a variable by one. The decrement operator
in Java is --.

exception: A run time error. Exceptions cause the execution of a program to
terminate.

122 CHAPTER 12. STRINGS AND THINGS

Appendix A

Contracts/APIs

Every class is characterized by a contract that specifies the behavior of its
methods – that is, how instances of the class respond to messages. For each
method, the contract specifies:

• The name of the method;

• The number, types, and names of the parameters;

• The type of the value returned by the method (or void, if no value is
returned);

• The visibility of the method (public, private, protected, package);

• An English description of how an instance of the class behaves when the
method is invoked.

The contract defines an abstraction barrier between the users and the
implementors of the class. A user of the class can expect that objects will
behave as described in the contract, but cannot expect anything more than
what is specified in the contract. An implementor of the class must ensure that
objects fulfill the contract, but need not implement anything more than what
is specified in the contract.
In the programming community, another term for a contract is an Appli-

cation Programming Interface (API). An API is the documentation that
allows programmers to use the components of a software library as black-box
abstractions. Every class in Java is a library component that is described by an
API. The Java API can be daunting for the uninitiated.
The following section include the contracts for some of the Java classes we

will work with in this class, as well as for the microworlds developed at Wellesley
College.

123

124 APPENDIX A. CONTRACTS/APIS

A.1 Buggle Contract

Constructor

Buggle ()

Returns a new buggle at position (1,1) whose heading is Direction.EAST, whose
color is Color.red, and whose brush is down.

Instance Methods

public void forward ()

Moves this buggle forward one step (in the direction of its current heading).
Complains if the buggle is facing a wall. If the Buggle’s brush is down, a
colored trail appears in its wake.

public void forward (int n)

Moves this buggle forward n steps. If the buggle encounters a wall along the
way, it will stop and complain. If the Buggle’s brush is down, a colored trail
appears in its wake.

public void backward ()

Moves this buggle backward one step (in the direction opposite to its current
heading). Complains if the buggle is facing a wall. If the Buggle’s brush is
down, a colored trail appears in its wake.

public void backward (int n)

Moves this backward n steps. If the buggle encounters a wall along the way, it
will stop and complain. If the Buggle’s brush is down, a colored trail appears
in its wake.

public boolean isFacingWall ()

Returns true if this buggle is next to a wall of Buggle world and facing it, false
otherwise.

public void left ()

Turns this buggle left by 90 degrees.

public void right ()

Turns this buggle right by 90 degrees.

A.1. BUGGLE CONTRACT 125

public void brushDown ()

Lowers this buggle’s brush. When the brush is lowered, the buggle leaves a trail
when it moves.

public void brushUp ()

Raises this buggle’s brush. When the brush is raised, the buggle leaves no trail
when it moves.

public boolean isBrushDown ()

Return true if this Buggle will leave a trail when it moves, false otherwise.

public void dropBagel ()

Drops a bagel in the cell currently occupied by this buggle. If there is already
a bagel in the cell, tbe buggle complains.

public void pickUpBagel ()

Picks up the bagel in the cell currently occupied by this buggle. If there is no
bagel in the cell, the buggle complains.

public boolean isOverBagel ()

Returns true if there is a bagel in the cell currently occupied by this buggle,
false otherwise.

public Point getPosition ()

Returns a point that indicates the current position of this buggle in the grid.

public void setPosition (Point p)

Changes the position of this buggle to be the point p. Complains if p is not in
the grid. Does not leave a trail.

public Direction getHeading ()

Returns the heading of this buggle.

public void setHeading (Direction d)

Changes the heading of this buggle to be the direction d.

public Color getColor ()

Returns the color of this buggle.

126 APPENDIX A. CONTRACTS/APIS

public void setColor (Color c)

Changes the color of this buggle to be the color c.

public String toString ()

Returns a string representation of this buggle.

A.2 BuggleWorld Contract

Instance Method

public void run ()

Execute specified buggle actions in this buggle world.

A.3 Point Contract

Constructor

public Point (int x, int y)

Returns a point with x-coordinate x and y-coordinate y.

Instance Methods

public boolean equals (Point p)

Returns true if this point has the same coordinates as p, and false otherwise.

public String toString ()

Returns a string representation of this point.

A.4 Direction Contract

Constants

The following constant directions specify the four compass points:

A.4. DIRECTION CONTRACT 127

public static final Direction NORTH

public static final Direction EAST

public static final Direction SOUTH

public static final Direction WEST

Instance Methods

public Direction left ()

Returns the compass point to the left of this direction.

public Direction right ()

Returns the compass point to the right of this direction.

public Direction opposite ()

Returns the compass point opposite to this direction.

public boolean equals (Direction d)

Returns true if this direction equals d, and false otherwise.

public String toString ()

Returns a string representation of this direction.

128 APPENDIX A. CONTRACTS/APIS

A.5 PictureWorld Contract

Class methods

public Picture empty()

Returns the empty picture.

Methods that rotate Pictures

public Picture clockwise90 (Picture p)

Returns a Picture which is the original Picture p rotated 90 degrees in the
clockwise direction.

public Picture clockwise180 (Picture p)

Returns a Picture which is the original Picture p rotated 180 degrees in the
clockwise direction.

public Picture clockwise270 (Picture p)

Returns a Picture which is the original Picture p rotated 270 degrees in the
clockwise direction.

Methods that flip Pictures around an axes

public Picture flipHorizontally (Picture p)

Returns a Picture which is the original Picture p flipped around its middle
horizontal axis (from (0.0,0.5) to (1.0,0.5)).

public Picture flipVertically (Picture p)

Returns a Picture which is the original Picture p flipped around its middle
vertical axis (from (0.5,0.0) to (0.5,1.0)).

public Picture flipDiagonally (Picture p)

Returns a Picture which is the original Picture p flipped around its diagonal
axis (from (0.0,0.0) to (1.0,1.0)).

public Picture overlay (Picture p1, Picture p2)

Returns a Picture which is the result of placing Picture p1 on top of Picture p2.

A.5. PICTUREWORLD CONTRACT 129

Methods that place Pictures next to each other

public Picture beside (Picture p1, Picture p2)

Returns a Picture which is the result of placing Picture p1 to the left of Picture
p2 where each Picture takes up half of the screen.

public Picture beside (Picture p1, Picture p2, double fraction)

Returns a Picture which is the result of placing Picture p1 to the left of Picture
p2 where p1 takes up the specified fraction of the screen. fraction is a
decimal number between 0.0 (none of the screen) and 1.0 (the entire screen).

public Picture above (Picture p1, Picture p2)

Returns a Picture which is the result of placing Picture p1 above Picture p2
where each Picture takes up half of the screen.

public Picture above (Picture p1, Picture p2, double fraction)

Returns a Picture which is the result of placing Picture p1 above Picture p2
where p1 takes up the specified fraction of the screen. fraction is a decimal
number between 0.0 (none of the screen) and 1.0 (the entire screen).

Picture Choice Manipulators

public void initializePictureChoices ()

This method is invoked when a PictureWorld applet is created.

public void addPictureChoice (String name, Picture pic)

This method adds the choice name to the list of Picture choices and associates
it with the Picture pic.

130 APPENDIX A. CONTRACTS/APIS

A.6 Turtle World Contract

Methods with integer parameters

public void fd (int n)

Move the turtle forward n steps.

public void bd (int n)

Move the turtle backward n steps.

public void lt (int angle)

Turn the turtle to the left angle degrees.

public void rt (int angle)

Turn the turtle to the right angle degrees.

public void pu

Raise the turtle’s pen.

public void pd

Lower the turtle’s pen.

Methods with floating-point parameters

There are versions of fd, bd, lt and rt that take double parameters, so you
can invoke these methods with either integer or floating-point values.

A.7. INTLIST CONTRACT 131

A.7 IntList Contract

The IntList class describes immutable linked lists of integers. An integer list is
either the empty list or a (non-empty) list node with a head component that
is an integer and a tail component that is another integer list. The lists are
immutable in the sense that the head or tail of a list node cannot be changed
after the list node has been created (via the prepend() method).
There are no public constructor or instance methods for integer lists; they

are created and manipulated by the following class methods:

Class Methods

public static IntList empty()

Returns an empty integer list.

public static boolean isEmpty(IntList list)

Returns true if list is an empty integer list and false if list is an integer list
node.

public static IntList prepend (int n, IntList tail)

Returns a new integer list node whose head is n and whose tail is tail.

public static int head (IntList list)

Returns the integer that is the head component of the integer list node list.
Signals an exception if list is empty.

public static IntList tail (IntList list)

Returns the integer list that is the tail component of the integer list node list.
Signals an exception if list is empty.

132 APPENDIX A. CONTRACTS/APIS

A.8 ObjectList Contract

The ObjectList class describes immutable linked lists of objects. An object list
is either the empty list or a list node with a head component that is an Object
and a tail component that is an ObjectList. ObjectLists are immutable in the
sense that the head or tail of a list node cannot be changed after the list node
has been created (via the prepend method).
There are no public constructor or instance methods for integer lists; they

are created and manipulated by the following class methods:

Class Methods

public static ObjectList empty()

Returns an empty object list.

public static boolean isEmpty (ObjectList list)

Returns true if list is an empty list and false if list is an object list node.

public static ObjectList prepend (Object x, ObjectList list)

Returns a new ObjectList whose head is x and whose tail is list.

public static Object head (ObjectList list)

Returns the Object that is the head of list. Signals an exception if list is
empty.

public static ObjectList tail (ObjectList list)

Returns the ObjectList that is the tail of list. Signals an exception if list is
empty.

Appendix B

Debugging

There are a few different kinds of errors that can occur in a program, and it is
useful to distinguish between them in order to track them down more quickly.

• Compile-time errors are produced by the compiler and usually indicate
that there is something wrong with the syntax of the program. Example:
omitting the semi-colon at the end of a statement.

• Run-time errors are produced by the run-time system if something goes
wrong while the program is running. Most run-time errors are Exceptions.
Example: an infinite recursion eventually causes a StackOverflowExcep-
tion.

• Semantic errors are problems with a program that compiles and runs, but
doesn’t do the right thing. Example: an expression may not be evaluated
in the order you expect, yielding an unexpected result.

The first step in debugging is to figure out which kind of error you are
dealing with. Although the following sections are organized by error type, there
are some techniques that are applicable in more than one situation.

B.1 Compile-time errors

The compiler is spewing error messages.

If the compiler reports 100 error messages, that doesn’t mean there are 100
errors in your program. When the compiler encounters an error, it gets thrown
off track for a while. It tries to recover and pick up again after the first error,
but sometimes it fails, and it reports spurious errors.
In general, only the first error message is reliable. I suggest that you only

fix one error at a time, and then recompile the program. You may find that
one semi-colon “fixes” 100 errors. Of course, if you see several legitimate error
messages, you might as well fix more than one bug per compilation attempt.

133

134 APPENDIX B. DEBUGGING

I’m getting a weird compiler message and it won’t go away.

First of all, read the error message carefully. It is written in terse jargon, but
often there is a kernel of information there that is carefully hidden.

If nothing else, the message will tell you where in the program the prob-
lem occurred. Actually, it tells you where the compiler was when it noticed
a problem, which is not necessarily where the error is. Use the information
the compiler gives you as a guideline, but if you don’t see an error where the
compiler is pointing, broaden the search.

Generally the error will be prior to the location of the error message, but
there are cases where it will be somewhere else entirely. For example, if you
get an error message at a method invocation, the actual error may be in the
method definition.

If you are building the program incrementally, you should have a good idea
about where the error is. It will be in the last line you added.

If you are copying code from a book, start by comparing your code to the
book’s code very carefully. Check every character. At the same time, remember
that the book might be wrong, so if you see something that looks like a syntax
error, it might be.

If you don’t find the error quickly, take a breath and look more broadly at
the entire program. Now is a good time to go through the whole program and
make sure it is indented properly. I won’t say that good indentation makes it
easy to find syntax errors, but bad indentation sure makes it harder.

Now, start examining the code for the common syntax errors.

1. Check that all parentheses and brackets are balanced and properly nested.
All method definitions should be nested within a class definition. All
program statements should be within a method definition.

2. Remember that upper case letters are not the same as lower case letters.

3. Check for semi-colons at the end of statements (and no semi-colons after
squiggly-braces).

4. Make sure that any strings in the code have matching quotation marks
(and that you use double-quotes, not single).

5. For each assignment statement, make sure that the type on the left is the
same as the type on the right.

6. For each method invocation, make sure that the arguments you provide
are in the right order, and have right type, and that the object you are
invoking the method on is the right type.

7. If you are invoking a fruitful method, make sure you are doing something
with the result. If you are invoking a void method, make sure you are not
trying to do something with the result.

B.2. RUN-TIME ERRORS 135

8. If you are invoking an object method, make sure you are invoking it on
an object with the right type. If you are invoking a class method from
outside the class where it is defined, make sure you specify the class name.

9. Inside an object method you can refer to the instance variables without
specifying an object. If you try that in a class method, you will get a
confusing message like, “Static reference to non-static variable.”

If nothing works, move on to the next section...

I can’t get my program to compile no matter what I do.

If the compiler says there is an error and you don’t see it, that might be because
you and the compiler are not looking at the same code. Check your develop-
ment environment to make sure the program you are editing is the program the
compiler is compiling. If you are not sure, try putting an obvious and deliberate
syntax error right at the beginning of the program. Now compile again. If the
compiler doesn’t find the new error, there is probably something wrong with
the way you set up the project.
Otherwise, if you have examined the code thoroughly, it is time for desperate

measures. You should start over with a program that you can compile and then
gradually add your code back.

• Make a copy of the file you are working on. If you are working on
Fred.java, make a copy called Fred.java.old.

• Delete about half the code from Fred.java. Try compiling again.

– If the program compiles now, then you know the error is in the other
half. Bring back about half of the code you deleted and repeat.

– If the program still doesn’t compile, the error must be in this half.
Delete about half of the code and repeat.

• Once you have found and fixed the error, start bringing back the code you
deleted, a little bit at a time.

This process is called “debugging by bisection.” As an alternative, you can
comment out chunks of code instead of deleting them. For really sticky syntax
problems, though, I think deleting is more reliable—you don’t have to worry
about the syntax of the comments, and by making the program smaller you
make it more readable.

B.2 Run-time errors

My program hangs.

If a program stops and seems to be doing nothing, we say it is “hanging.” Often
that means that it is caught in an infinite loop or an infinite recursion.

136 APPENDIX B. DEBUGGING

• If there is a particular loop that you suspect is the problem, add a print
statement immediately before the loop that says “entering the loop” and
another immediately after that says “exiting the loop.”

Run the program. If you get the first message and not the second, you’ve
got an infinite loop. Go to the section titled “Infinite loop.”

• Most of the time an infinite recursion will cause the program to run for
a while and then produce a StackOverflowException. If that happens, go
to the section titled “Infinite recursion.”

If you are not getting a StackOverflowException, but you suspect there is
a problem with a recursive method, you can still use the techniques in the
infinite recursion section.

• If neither of those things works, start testing other loops and other recur-
sive methods.

• If none of those things works, then it is possible that you don’t understand
the flow of execution in your program. Go to the section titled “Flow of
execution.”

Infinite loop

If you think you have an infinite loop and think you know what loop is causing
the problem, add a print statement at the end of the loop that prints the values
of the variables in the condition, and the value of the condition.
For example,

while (x > 0 && y < 0) {

// do something to x

// do something to y

System.out.println ("x: " + x);

System.out.println ("y: " + y);

System.out.println ("condition: " + (x > 0 && y < 0));

}

Now when you run the program you will see three lines of output for each time
through the loop. The last time through the loop, the condition should be
false. If the loops keeps going, you will be able to see the values of x and y

and you might figure out why they are not being updated correctly.

Infinite recursion

Most of the time an infinite recursion will cause the program to run for a while
and then produce a StackOverflowException.
If you suspect that method is causing an infinite recursion, start by checking

to make sure that there is a base case. In other words, there should be some

B.2. RUN-TIME ERRORS 137

condition that will cause the method to return without making a recursive
invocation. If not, then you need to rethink the algorithm and identify a base
case.
If there is a base case, but the program doesn’t seem to be reaching it, add

a print statement at the beginning of the method that prints the parameters.
Now when you run the program you will see a few lines of output every time
the method is invoked, and you will see the parameters. If the parameters are
not moving toward the base case, you will get some ideas about why not.

Flow of execution

If you are not sure how the flow of execution is moving through your program,
add print statements to the beginning of each method with a message like “en-
tering method foo,” where foo is the name of the method.
Now when you run the program it will print a trace of each method as it is

invoked.
It is often useful to print the parameters each method receives when it is

invoked. When you run the program, check whether the parameters are reason-
able, and check for one of the classic errors—providing parameters in the wrong
order.

When I run the program I get an Exception.

If something goes wrong during run time, the Java run-time system prints a
message that includes the name of the exception, the line of the program where
the problem occurred, and a stack trace.
The stack trace includes the method that is currently running, and then the

method that invoked it, and then the method that invoked that, and so on. In
other words, it traces the path of method invocations that got you to where you
are.
The first step is to examine the place in the programwhere the error occurred

and see if you can figure out what happened.

NullPointerException: You tried to access an instance variable or invoke a
method on an object that is currently null. You should figure out what
variable is null and then figure out how it got to be that way.

Remember that when you declare a variable with an object type, it is
initially null, until you assign a value to it. For example, this code causes
a NullPointerException:

Point blank;

System.out.println (blank.x);

ArrayIndexOutOfBoundsException: The index you are using to access an
array is either negative or greater than array.length-1. If you can find
the site where the problem is, add a print statement immediately before

138 APPENDIX B. DEBUGGING

it to print the value of the index and the length of the array. Is the array
the right size? Is the index the right value?

Now work your way backwards through the program and see where the
array and the index come from. Find the nearest assignment statement
and see if it is doing the right thing.

If either one is a parameter, go to the place where the method is invoked
and see where the values are coming from.

StackOverFlowException: See “Infinite recursion.”

I added so many print statements I get inundated with
output.

One of the problems with using print statements for debugging is that you can
end up buried in output. There are two ways to proceed: either simplify the
output or simplify the program.
To simplify the output, you can remove or comment out print statements

that aren’t helping, or combine them, or format the output so it is easier to
understand.
To simplify the program, there are several things you can do. First, scale

down the problem the program is working on. For example, if you are sorting
an array, sort a small array. If the program takes input from the user, give it
the simplest input that causes the error.
Second, clean up the program. Remove dead code and reorganize the pro-

gram to make it as easy to read as possible. For example, if you suspect that
the error is in a deeply-nested part of the program, try rewriting that part with
simpler structure. If you suspect a large method, try splitting it into smaller
methods and test them separately.
Often the process of finding the minimal test case leads you to the bug. For

example, if you find that a program works when the array has an even number
of elements, but not when it has an odd number, that gives you a clue about
what is going on.
Similarly, rewriting a piece of code can help you find subtle bugs. If you

make a change that you think doesn’t affect the program, and it does, that can
tip you off.

B.3 Semantic errors

My program doesn’t work.

In some ways semantic errors are the hardest, because the compiler and the
run-time system provide no information about what is wrong. Only you know
what the program was supposed to do, and only you know that it isn’t doing it.
The first step is to make a connection between the program text and the

behavior you are seeing. You need a hypothesis about what the program is

B.3. SEMANTIC ERRORS 139

actually doing. One of the things that makes this hard is that computers run
so fast. You will often wish that you could slow the program down to human
speed, but there is no straightforward way to do that, and even if there were, it
is not really a good way to debug.
Here are some questions to ask yourself:

• Is there something the program was supposed to do, but doesn’t seem to
be happening? Find the section of the code that performs that function
and make sure it is executing when you think it should. Add a print
statement to the beginning of the suspect methods.

• Is something happening that shouldn’t? Find code in your program that
performs that function and see if it is executing when it shouldn’t.

• Is a section of code producing an effect that is not what you expected?
Make sure that you understand the code in question, especially if it in-
volves invocations to built-in Java methods. Read the documentation for
the methods you invoke. Try out the methods by invoking the methods
directly with simple test cases, and check the results.

In order to program, you need to have a mental model of how programs
work. If your program that doesn’t do what you expect, very often the problem
is not in the program; it’s in your mental model.
The best way to correct your mental model is to break the program into

its components (usually the classes and methods) and test each component
independently. Once you find the discrepancy between your model and reality,
you can solve the problem.
Of course, you should be building and testing components as you develop

the program. If you encounter a problem, there should be only a small amount
of new code that is not known to be correct.
Here are some common semantic errors that you might want to check for:

• If you use the assignment operator, =, instead of the equality operator,
==, in the condition of an if, while or for statement, you might get an
expression that is sytactically legal, but it doesn’t do what you expect.

• When you apply the equality operator, ==, to an object, it checks shallow
equality. If you meant to check deep equality, you should use the equals
method (or define one, for user-defined objects).

• Some Java libraries expect user-defined objects to define methods like
equals. If you don’t define them yourself, you will inherit the default
behavior from the parent class, which may not be what you want.

• In general, inheritance can cause subtle semantic errors, because you may
be executing inherited code without realizing it. Again, make sure you
understand the flow of execution in your program.

140 APPENDIX B. DEBUGGING

I’ve got a big hairy expression and it doesn’t do what I
expect.

Writing complex expressions is fine as long as they are readable, but they can
be hard to debug. It is often a good idea to break a complex expression into a
series of assignments to temporary variables.
For example:

bobby.setColor (bobby.getColor().darker());

Can be rewritten as

Color bobbyColor = bobby.getColor();

Color darker = bobbyColor.darker ();

bobby.setColor (darker);

The explicit version is easier to read, because the variable names provide addi-
tional documentation, and easier to debug, because we can check the types of
the intermediate variables and display their values.
Another problem that can occur with big expressions is that the order of

evaluation may not be what you expect. For example, if you are translating the
expression x

2π
into Java, you might write

double y = x / 2 * Math.PI;

That is not correct, because multiplication and division have the same prece-
dence, and are evaluated from left to right. So this expression computes xπ/2.
A good way to debug expressions is to add parentheses to make the order of

evaluation explicit.

double y = x / (2 * Math.PI);

Any time you are not sure of the order of evaluation, use parentheses. Not
only will the program be correct (in the sense of doing what you intend); it
will also be more readable for other people who haven’t memorized the rules of
precedence.

I’ve got a method that doesn’t return what I expect.

If you have a return statement with a complex expression, you don’t have a
chance to print the return value before returning. Again, you can use a tempo-
rary variable. For example, instead of

public Picture fourPics (Picture p1, Picture p2, Picture p3, Picture p4){

return above (beside (p1, p2), beside (p3, p4));

}

You could write

B.3. SEMANTIC ERRORS 141

public Picture fourPics (Picture p1, Picture p2, Picture p3, Picture p4){

Picture row1 = beside (p1, p2);

Picture row2 = beside (p3, p4);

Picture grid = above (row1, row2);

return grid;

}

Now you have the opportunity to print (or display) any of row1, row2 or grid
before returning.

My print statement isn’t doing anything

If your use the println method, the output gets displayed immediately, but if
you use print (at least in some environments) the output gets stored without
being displayed until the next newline character gets output. If the program
terminates without producing a newline, you may never see the stored output.
If you suspect that this is happening to you, try changing all the print

statements to println.

I’m really, really stuck and I need help

First of all, try getting away from the computer for a few minutes. Computers
emit waves that affect the brain, causing the following symptoms:

• Frustration and/or rage.

• Superstitious beliefs (“the computer hates me”) and magical thinking
(“the program only works when I wear my hat backwards”).

• Random walk programming (the attempt to program by writing every
possible program and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, get up and go for
a walk. When you are calm, think about the program. What is it doing? What
are some possible causes of that behavior? When was the last time you had a
working program, and what did you do next?
Sometimes it just takes time to find a bug. I often find bugs when I am away

from the computer and I let my mind wander. Some of the best places to find
bugs are trains, showers, and in bed, just before you fall asleep.

No, I really need help.

It happens. Even the best programmers occasionally get stuck. Sometimes you
work on a program so long that you can’t see the error. A fresh pair of eyes is
just the thing.
Before you bring someone else in, make sure you have exhausted the tech-

niques described here. You program should be as simple as possible, and you

142 APPENDIX B. DEBUGGING

should be working on the smallest input that causes the error. You should
have print statements in the appropriate places (and the output they produce
should be comprehensible). You should understand the problem well enough to
describe it concisely.
When you bring someone in to help, be sure to give them the information

they need.

• What kind of bug is it? Compile-time, run-time, or semantic?

• If the bug occurs at compile-time or run-time, what is the error message,
and what part of the program does it indicate?

• What was the last thing you did before this error occurred? What were
the last lines of code that you wrote, or what is the new test case that
fails?

• What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you could have
done to find it faster. Next time you see something similar, you will be able to
find the bug more quickly.
Remember, in this class the goal is not to make the program work. The goal

is to learn how to make the program work.

Appendix C

Program development plan

If you are spending a lot of time debugging, it is probably because you do not
have an effective program development plan.
A typical, bad program development plan goes something like this:

1. Write an entire method.

2. Write several more methods.

3. Try to compile the program.

4. Spend an hour finding syntax errors.

5. Spend an hour finding run time errors.

6. Spend three hours finding semantic errors.

The problem, of course, is the first two steps. If you write more than one
method, or even an entire method, before you start the debugging process, you
are likely to write more code than you can debug.
If you find yourself in this situation, the only solution is to remove code

until you have a working program again, and then gradually build the program
back up. Beginning programmers are often unwilling to do this, because their
carefully crafted code is precious to them. To debug effectively, you have to be
ruthless!
Here is a better program development plan:

1. Start with a working program that does something visible, like printing
something.

2. Add a small number of lines of code at a time, and test the program after
every change.

3. Repeat until the program does what it is supposed to do.

143

144 APPENDIX C. PROGRAM DEVELOPMENT PLAN

After every change, the program should produce some visible effect that
demonstrates the new code. This approach to programming can save a lot of
time. Because you only add a few lines of code at a time, it is easy to find syntax
errors. Also, because each version of the program produces a visible result, you
are constantly testing your mental model of how the program works. If your
mental model is erroneous, you will be confronted with the conflict (and have a
chance to correct it) before you have written a lot of erroneous code.
One problem with this approach is that it is often difficult to figure out a

path from the starting place to a complete and correct program.
I will demonstrate by developing a method called isIn that takes a String

and a Vector, and that returns a boolean: true if the String appears in the list
and false otherwise.

1. The first step is to write the shortest possible method that will compile,
run, and do something visible:

public static boolean isIn (String word, Vector v) {

System.out.println ("isIn");

return false;

}

Of course, to test the method we have to invoke it. In main, or somewhere
else in a working program, we need to create a simple test case.

We’ll start with a case where the String appears in the vector (so we expect
the result to be true).

public static void main (String[] args) {

Vector v = new Vector ();

v.add ("banana");

boolean test = isIn ("banana", v);

System.out.println (test);

}

If everything goes according to plan, this code will compile, run, and print
the word isIn and the value false. Of course, the answer isn’t correct,
but at this point we know that the method is getting invoked and returning
a value.

In my programming career, I have wasted way too much time debugging a
method, only to discover that it was never getting invoked. If I had used
this development plan, it never would have happened.

2. The next step is to check the parameters the method receives.

public static boolean isIn (String word, Vector v) {

System.out.println ("isIn looking for " + word);

145

System.out.println ("in the vector " + v);

return false;

}

The first print statement allows us to confirm that isIn is looking for
the right word. The second statement prints a list of the elements in the
vector.

To make things more interesting, we might add a few more elements to
the vector:

public static void main (String[] args) {

Vector v = new Vector ();

v.add ("apple");

v.add ("banana");

v.add ("grapefruit");

boolean test = isIn ("banana", v);

System.out.println (test);

}

Now the output looks like this:

isIn looking for banana

in the vector [apple, banana, grapefruit]

Printing the parameters might seem silly, since we know what they are
supposed to be. The point is to confirm that they are what we think they
are.

3. To traverse the vector, we can take advantage of the code from Section 9.8.
In general, it is a great idea to reuse code fragments rather than writing
them from scratch.

public static boolean isIn (String word, Vector v) {

System.out.println ("isIn looking for " + word);

System.out.println ("in the vector " + v);

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

}

return false;

}

Now when we run the program it prints the elements of the vector one
at a time. If all goes well, we can confirm that the loop examines all the
elements of the vector.

146 APPENDIX C. PROGRAM DEVELOPMENT PLAN

4. So far we haven’t given much thought to what this method is going to do.
At this point we probably need to figure out an algorithm. The simplest
algorithm is a linear search, which traverses the vector and compares each
element to the target word.

Happily, we have already written the code that traverses the vector. As
usual, we’ll proceed by adding just a few lines at a time:

public static boolean isIn (String word, Vector v) {

System.out.println ("isIn looking for " + word);

System.out.println ("in the vector " + v);

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

String s = (String) v.get(i);

if (word.equals (s)) {

System.out.println ("found it");

}

}

return false;

}

As always, we use the equals method to compare Strings, not the ==

operator!

Again, I added a print statement so that when the new code executes it
produces a visible effect.

5. At this point we are pretty close to working code. The next change is to
return from the method if we find what we are looking for:

public static boolean isIn (String word, Vector v) {

System.out.println ("isIn looking for " + word);

System.out.println ("in the vector " + v);

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

String s = (String) v.get(i);

if (word.equals (s)) {

System.out.println ("found it");

return true;

}

}

return false;

}

If we find the target word, we return true. If we get all the way through
the loop without finding it, then the correct return value is false.

147

If we run the program at this point, we should get

isIn looking for banana

in the vector [apple, banana, grapefruit]

apple

banana

found it

true

6. The next step is to make sure that the other test cases work correctly.
First, we should confirm that the method returns false if the word in not
in the vector.

Then we should check some of the typical troublemakers, like an empty
vector (one with size 0) and a vector with a single element. Also, we might
try giving the method an empty String.

As always, this kind of testing can help find bugs if there are any, but it
can’t tell you if the method is correct.

7. The penultimate step is to remove or comment out the print statements.

public static boolean isIn (String word, Vector v) {

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

String s = (String) v.get(i);

if (word.equals (s)) {

return true;

}

}

return false;

}

Commenting out the print statements is a good idea if you think you
might have to revisit this method later. But if this is the final version of
the method, and you are convinced that it is correct, you should remove
them.

Removing the comments allows you to see the code most clearly, which
can help you spot any remaining problems.

If there is anything about the code that is not obvious, you should add
comments to explain it. Resist the temptation to translate the code line
by line. For example, no one needs this:

// if word equals s, return true

if (word.equals (s)) {

return true;

}

148 APPENDIX C. PROGRAM DEVELOPMENT PLAN

You should use comments to explain non-obvious code, to warn about
conditions that could cause errors, and to document any assumptions that
are built into the code. Also, before each method, it is a good idea to write
an abstract description of what the method does.

8. The final step is to examine the code and see if you can convince yourself
that it is correct.

At this point we know that the method is syntactically correct, because it
compiles.

To check for run time errors, you should find every statement that can
cause an error and figure out what conditions cause the error.

The statements in this method that can produce a run time error are:

v.size() if v is null.
word.equals (s) if word is null.
(String) v.get(i) if v is null or i is out of bounds,

or the ith element of v is not a String.

Since we get v and word as parameters, there is no way to avoid the first
two conditions. The best we can do is check for them.

public static boolean isIn (String word, Vector v) {

if (v == null || word == null) return false;

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

String s = (String) v.get(i);

if (word.equals (s)) {

return true;

}

}

return false;

}

In general, it is a good idea for methods to make sure their parameters
are legal.

The structure of the for loop ensures that i is always between 0 and
v.size()-1. But there is no way to ensure that the elements of v are
Strings. On the other hand, we can check them as we go along. The
instanceof operator checks whether an object belongs to a class.

Object obj = v.get(i);

if (obj instanceof String) {

String s = (String) v.get(i);

}

149

This code gets an object from the vector and checks whether it is a String.
If it is, it performs the typecast and assigns the String to s.

As an exercise, modify isIn so that if it finds an element in the vector
that is not a String, it skips to the next element.

If we handle all the problem conditions, we can prove that this method
will not cause a run time error.

We haven’t proven yet that the method is semantically correct, but by
proceeding incrementally, we have avoided many possible errors. For ex-
ample, we already know that the method is getting parameters correctly
and that the loop traverses the entire vector. We also know that it is
comparing Strings successfully, and returning true if it finds the target
word. Finally, we know that if the loop exists, the target word cannot be
in the vector.

Short of a formal proof, that is probably the best we can do.

Index

abstract class, 90
Abstract Window Toolkit, see AWT
abstraction

data, 106
accessor method, 104
algorithm, 100, 101
aliasing, 29, 77, 81
ambiguity, 7
Applet class, 106
argument, 13

list, 17
arithmetic

char, 118
floating-point, 36, 99

arithmetic operator, 15
array, 83

compared to object, 86
copying, 84
element, 84
length, 86
two-dimensional, 87

ArrayIndexOutOfBounds, 89
assignment, 11, 37
assignment operator, 16
AWT, 73, 81

BankAccount, 103
base case, 59–61, 111
bisection

debugging by, 135
body

loop, 64
boolean, 40, 41, 60
bounding box, 108
bracket operator, 88
bug, 5
Buggle, 11

BuggleWorld, 25, 50

Cartesian coordinate, 108
char, 113, 118
charAt, 113
Chianti, 84
class, 14, 101

Applet, 106
BankAccount, 103
Buggle, 11
BuggleWorld, 25
Color, 13
Date, 95
Direction, 15
Graphics, 107
IntList, 55
Iterator, 90
Math, 57
ObjectList, 61
Picture, 32
Point, 16, 73, 74
Rectangle, 73, 75
String, 23, 119, 120
Time, 92
Vector, 89

class definition, 91, 103
class method, 56
ClassCastException, 62
collection, 86
Color, 13
comment, 18
common case, 42
compareTo, 120
comparison

operator, 38
String, 120

compile, 2, 9

150

INDEX 151

compile-time error, 5, 133
compiler, 133
compound data structure, 55
concatenation, 24
ConcurrentModification, 90
conditional, 38

alternative, 38
chained, 39
nested, 39, 60

consistency, 105
constant, 15
constructor, 16, 25, 92, 101, 104
contract, 19
coordinate, 108
counter, 117, 121

data abstraction, 106
Date, 95
debugging, 5, 9, 23, 133
debugging by bisection, 135
declaration, 12, 14, 74
decrement, 97, 117, 121
definition

class, 103
recursive, 46

deterministic, 87
detour, 32
Direction, 15
division

floating-point, 65
documentation, 113, 115
double (floating-point), 35
double-quote, 113
Doyle, Arthur Conan, 6
drawLine, 110
drawOval, 108
drawRect, 110

element, 84
empty list, 56
encapsulation, 67, 69, 72, 77, 117
equals, 120
error, 9

compile-time, 5, 133
logic, 6
run-time, 5, 115, 133

semantic, 133
error messages, 133
evaluation

order of, 31
Exception, 137
exception, 5, 9, 121, 133

ArrayIndexOutOfBounds, 89
ArrayOutOfBounds, 84
ClassCastException, 62
ConcurrentModification, 90
NullPointer, 79
StringIndexOutOfBounds, 115

Execution Land, 26, 48
expression, 15, 33, 84

big and hairy, 140
boolean, 40
difference from statement, 15

extend, 25, 57

factorial, 48
fava beans, 84
fibonacci, 49
field, 12
fillOval, 110
fillRect, 110
filter, 61
floating-point, 35
flow of execution, 31, 137
for, 85
formal language, 7, 9
formalism, 24
frabjuous, 46
fractal, 111
fruitful method, 17, 32, 47
function, 96, 101
functional programming, 101

garbage collection, 79, 81
generalization, 67, 69, 72, 77, 100,

117
global variable, 31
Graphics class, 107
graphics coordinate, 108

hanging, 135
head, 58

152 INDEX

high-level language, 1, 9
Holmes, Sherlock, 6

immutable, 119
import, 73
increment, 97, 117, 121
incremental development, 99
index, 84, 114, 121
indexOf, 116
infinite loop, 64, 72, 135
infinite recursion, 135
initialization, 40
instance, 14, 16, 81, 101
instance method, 56
instance variable, 12, 74, 81, 92, 103
instanceof operator, 148
interpret, 2, 9
IntList class, 55
iteration, 63, 72
Iterator class, 90

Java Execution Model, 26
JEM, 26, 29, 31, 48

language
formal, 7
high-level, 1
low-level, 1
natural, 7
object-oriented, 11
programming, 1
safe, 5

leap of faith, 49
length

array, 86
String, 114

linked list, 55, 71
Linux, 6
list, 55, 71

empty, 56
head, 58
tail, 58
traverse, 59

literalness, 7
local variable, 31, 72
logarithm, 64

logic error, 6
logical operator, 40
Logo, 11
loop, 64, 71, 72, 84

body, 64
counting, 117
for, 85
infinite, 64, 72

loop variable, 67, 84, 114
Lovelace, Ada, 120
low-level language, 1, 9

Math class, 57
mental model, 139
message, 12, 16
method, 68

accessor, 104
benefit of, 29
boolean, 41
class, 56
constructor, 92
definition, 27
fruitful, 17, 32
Graphics, 108
instance, 56
Math, 57
modifier, 98
object, 108
paint, 107
pure function, 96
recursive, 47
void, 17
with parameters, 29

method invocation, 12, 16, 32
nested, 18

Mickey Mouse, 109
model

mental, 139
modifier, 98, 101
modularity, 31
modulus, 55
multiple assignment, 37
mutable, 76

natural language, 7, 9
nested conditional, 60

INDEX 153

nested structure, 41
nesting, 18
new, 74, 94
new operator, 11
newline, 24, 46
nondeterministic, 87
null, 78, 83

object, 73, 96, 121
as parameter, 75
as return type, 76
compared to array, 86
mutable, 76
printing, 95

Object Land, 27
object type, 80, 91
object-oriented, 11
ObjectList class, 61
operator

arithmetic, 15
assignment, 16
bracket, 88
char, 118
comparison, 38
decrement, 97, 117
increment, 97, 117
instanceof, 148
logical, 40
modulus, 55
new, 11
object, 96
relational, 40

order of evaluation, 31, 140
overloading, 93

package, 73, 81
paint method, 107
parameter, 29, 75
parameters

recursion using, 51
parse, 7, 9
Picture class, 32
pixel, 109
poetry, 8
Point, 74
Point class, 16, 73

portable, 1
precedence, 31, 140
primitive type, 80
print, 58, 95
print statement, 138, 141
print statment, 23
println, 23
private, 104
problem-solving, 9
program development, 72

incremental, 99
planning, 99

programming language, 1
programming style, 99
project, 101
prose, 8
prototyping, 99
pure function, 96

quote, 113

random number, 87
Rectangle, 75
Rectangle class, 73
recursion, 45, 50

with return values, 52
recursive, 46
recursive data structure, 55
recursive definition, 46
recursive step, 59–61, 111
redundancy, 7
reference, 74, 77, 81
relational operator, 40
return, 76
return statement, 33, 140
return type, 33
return value

with recursion, 52
rounding, 36
run, 25
run-time error, 5, 79, 84, 115, 121,

133

safe language, 5
semantic error, 133
semantics, 6, 9, 40

154 INDEX

setColor, 108
side-effect, 13
singleton, 56
special case, 42, 105
startup class, 101
state, 74, 81
state diagram, 74, 81, 83
statement, 3, 15

assignment, 11, 37
conditional, 38
declaration, 74
different from expression, 15
for, 85
import, 73
initialization, 40
new, 74, 94
print, 23, 95, 138, 141
return, 33, 76, 140
while, 63

static, 56, 92
String, 24, 119, 120

length, 114
String class, 23
Sun, 113
symbol, 15
syntax, 5, 9, 134

table, 64
two-dimensional, 66

tail, 58
temporary variable, 19, 140
this, 93
Time, 92
token, 9
toLowerCase, 119
toUpperCase, 119
traverse, 59, 114, 121

counting, 117
Turing, Alan, 45, 120
turtle, 11
two-dimensional array, 87
type, 14, 24

array, 83
char, 113, 118
double, 35
object, 80, 91

primitive, 80
String, 24
user-defined, 91

type conversion, 24
typecasting, 36, 119

user-defined type, 91

value
char, 113

variable
global, 31
instance, 74, 92
local, 31, 72
loop, 67, 84, 114
temporary, 140

Vector class, 89
void, 96
void method, 17

while statement, 63

