Solutions to sample questions for CS111 Midterm Exam 1.

Problem 1: Buggle World Execution
Consider the two Java classes in Fig. 1.

public class DoltWorld extends BuggleWorld

{

public void run ()

{
DoItBuggle dewey = new DoItBuggle(); // run statement
int n = 5; // run statement
dewey.setPosition(new Point(n,n-2)); // run statement
dewey.brushUp(); // run statement
dewey.doit (Color.green, n-1); // run statement
dewey.doit(Color.blue, n+1); // run statement
dewey.forward(); // run statement
dewey.brushDown() ; // run statement
dewey.forward(3); // run statement

© o0 N O WN -

}

class DoltBuggle extends Buggle

{

public void doit (Color c, int n)

{
Color oldColor = this.getColor();
this.setColor(c);
this.forward(n);
this.brushDown();
this.backward(n-2);
this.brushUp();
this.backward(2);
this.left();
this.setColor(oldColor);

Figure 1: Two Java classes.

Suppose that the run() method is invoked on an instance of DoItWorld which has a 10 x 10 grid of
cells. In the four grids on the following page, show the state of the grid directly after the execution
of each of the statements in the run() method body marked with a *.

In each grid, you should show the following;:

1. Draw buggle dewey as a triangle “pointing” in the direction that the buggle is facing.

2. Indicate the current color of the buggle by putting the first letter of the color name inside the
triangle (e.g. B for blue, G for green, etc.).

3. Indicate the color of each non-white grid cell by putting the first letter of the color name
inside the cell (e.g. B for blue, G for green, etc.).

DoItWorld grid after the
execution of run() statement 3

DoItWorld grid after the
execution of run() statement 5

10 10
9 9
8 8
7 7
6 6
5 5
4 4
3 R> 3 A G
2 2
1 1
3 4 5 6 7 8 10 1 2 3 4 5 6 7 8 10
DoItWorld grid after the DoItWorld grid after the
execution of run() statement 6 execution of run() statement 9
10 10
9 B 9 B
8 B 8 B
7 B 7 B
6 B 6 B
5 5
4 4
3 < G 3<® R |R|R G
2 2
1 1
3 4 5 6 7 8 10 1 2 3 4 5 6 7 8 10

Problem 2: Writing Methods
Suppose that LetterWorld is a subclass of PictureWorld that supplies you with a method
named f () with the following contract:

public Picture f (Color c)
Returns a picture of the letter “F” in color ¢, as shown below.

The dotted lines indicate the boundaries of the unit square, and are not part of the
picture. The letter is a solid color ¢ and does not have any boundary line drawn in a
separate color.

On the next page your task is to write two methods:

1. A method named e () that takes a single color parameter and returns the following picture
of the letter “E” in that color.

2. A method named fame () that takes two color parameters and returns the following picture:

The “F” and “E” have the color of the first parameter, while the “A” and “M” have the color
of the second parameter.

You may assume that both methods are defined in the LetterWorld class, and so may use the
f() method in addition to the methods in the PictureWorld contract (e.g., clockwise90(),
flipDiagonally(), above(), etc.). You may assume that the fourPics() and fourSame () meth-
ods defined in class and on the problem sets are also available. Your fame() method may use
your e () method, which you may assume works correctly (even if your definition of e () is actually
incorrect or missing).

Put your definition of the e () method here.

Here is a solution that does not name any intermediate pictures:

// The letter “E” can be formed by overlaying an “F”
// and a copy of “F” flipped across the horizontal axis.
public Picture e (Color c)

{
}

Here is another solution, which names some intermediate pictures:

return overlay(f(c), flipHorizontally(f(c)));

public Picture e (Color c)

{
Public picture f ¢ = f(c);
Public picture f c flipH = flipHorizontally(f c);
return overlay(f_c, f c_flipH);

Put your definition of the fame () method here.

Here is one solution, which does not name any intermediate pictures:

// Create a picture consisting of quadrants “F”,“A”, ‘M”,“E”

// where “F” and “E” are in color cl and “A” and ‘M” are in color c2

public Picture fame (Color cl1, Color c2)

{

return fourPics(f(cl), // F
overlay(f(c2),
flipVertically(£(c2))), // make A out of 2 Fs

clockwise90(e(c2)), // M is rotated E
e(c1)); // E

}

Here is another solution, which names some intermediate pictures:

public Picture fame (Color cl, Color c2)
{
Picture f cl = f(cl);
Picture f_c2 = £(c2);
Picture a_c2 = overlay(f_c2, flipVertically(f c2));
Picture m.c2 = clockwise90(e(c2));
Picture e_cil e(cl);
return fourPics(f cl, a.c2, mc2, ecl);

Problem 3: Debugging
The class declarations in Fig. 2 contain (at least) 10 errors (syntax errors and type errors).

public class ExamBuggleWorld extends BuggleWorld // line 1
{ // line 2
public void run () // line 3
{ // line 4
Color c¢ = Color.cyan(); // line 5
int n = 4 // line 6
ExamBuggle emma = ExamBuggle(); // line 7
emma.mysteryl(c,n); // line 8
emma .mysteryl(3,Color.red); // line 9
boolean answer = emma.mystery2(); // line 10
this.mystery3(Q); // line 11
} // line 12
} // line 13
// line 14
class ExamBuggle extends Buggle // line 15
{ // line 16
public void mysteryl(Color c, int nl) // line 17
{ // line 18
n2 = nl + 1; // line 19
this.setColor(Color.c); // line 20
forward(n2); // line 21
this.dropBagel(); // line 22
// line 23
public boolean mystery2() // line 24
{ // line 25
this.is0OverBagel(); // line 26
} // line 27
// line 28
public mystery3() // line 29
{ // line 30
this.dropBagel(); // line 31
1 // line 32
} // line 33
Figure 2:

In the table on the next page, for each of 10 errors in different lines of the above program give:

1. the line number of the error,
2. a brief description of the error, and

3. a corrected version of the line (i.e., with the error fixed).

You may list the errors in any order. You do not have to list them in the order in which they occur
in the program.

Error #

Line #

Brief description of error

Corrected line

Color.cyan() is not a method
invocation

Color ¢ = Color.cyan;

The local variable declaration int n =
is missing a semi-colon at the end

4

int n = 4;

There is a missing new in
the constructor method invocation
that creates an ExamBuggle

ExamBuggle emma = new
ExamBuggle () ;

The two arguments of
the instance method invocation
emma.mysteryl(3,Color.red)
are in the wrong order

emma.mysteryl(Color.red,3);

11

In this.mystery3(), this stands for
an instance of ExamBuggleWorld,
which does not understand the
mystery3() message; the recipient
should be an instance of ExamBuggle

emma.mystery3() ;

19

The local variable declaration
n2 = nl + 1; is missing a type
for the contents of the variable

int n2 = nl1 + 1;

20

Color.c attempts to reference
a non-existent class constant
rather than the parameter c

this.setColor(c);

23

The instance method declaration
for mystery1 () is missing
a close squiggly brace.

26

The non-void method mystery2() is
missing a return statement.

return this.isOverBagel();

10

29

The method header for mystery3() is
missing the return type, void

public void mystery3()

