
MORE CS111 PRACTICE PROBLEMS FOR EXAM 1

Problem 1: Booleans and Conditionals

a. (Circle True or False) true and false denote objects in Java. Briefly justify your answer.

answer: False. Boolean values (as well as integers, floating point numbers, and characters) are
primitive values, not objects. Primitive values cannot respond to messages.

b. Betty Bother has written the following method (in a rather unfortunate programming style)
which does not compile properly:

public boolean isColdAndHeadingNorth () {

if (getColor().equals(Color.blue) &&

getHeading().equals(Direction.NORTH)) {

return true;

} else if (!getColor().equals(Color.blue) ||

!getHeading().equals(Direction.NORTH)) {

return false;

}

}

(1) Explain the compiler error and (2) rewrite Betty’s method in a much simpler style.

answer: (1) In the body of a fruitful method like isColdAndHeadingNorth, the Java compiler
requires that every control path through the program must return a value. The above method
has an implicit else {} branch that does not return a value, so the compiler complains — even
though control can never actually take this path at run time (because the other two branches
handle all possible cases).

(2) A much clearer and more succinct way to write the method is:

public boolean isColdAndHeadingNorth () {

return (getColor().equals(Color.blue) &&

getHeading().equals(Direction.NORTH));

}

c. Which of the following program fragments are equivalent to:

if (A && B) {

return bluePatch;

} else {

return redPatch;

}

1. if (A && B) {
return bluePatch;

}
return redPatch;

1

2. if (!A) {
return redPatch;

}
if (B) {

return bluePatch;

}
return redPatch;

3. if (!A || !B) {
return redPatch;

}
return bluePatch;

answer: All three conditional statements are equivalent to the original one.

d. Define a Buggle method named isBoxedIn() that has no parameters and returns true if
a buggle is in a cell surrounded by walls on all four sides, and otherwise returns false. The
final state of the buggle when isBoxedIn() returns should be the same as the state of the buggle
when isBoxedIn() is invoked. You may not use recursion or iteration in your solution, but you
may define auxiliary methods if you want

answer: There are many different ways to define isBoxedIn(). Here we look at a few ap-
proaches.

One approach that is easy to read but is not particularly efficient is to use a separate predicate
for each of the four positions:

public boolean isBoxedIn() {

return isFacingWall() && isWallToLeft() && isWallInBack() && isWallToRight();

}

public boolean isWallToLeft() {

left();

boolean result = isFacingWall();

right();

return result;

}

public boolean isWallInBack() {

left();

boolean result = isWallToLeft();

right();

return result;

}

public boolean isWallToRight() {

left();

boolean result = isWallInBack();

right();

return result;

}

Note that isWallToRight() actually turns leftward three times, and could be made more efficient
by turning right once instead:

public boolean isWallToRight() {

2

right();

boolean result = isFacingWall();

left();

return result;

}

Even so, the buggle repeats a lot of turning in the helper predicates. The repeated turning can be
eliminated by performing all tests within isBoxedIn() itself. Although the result is more efficient,
it is rather difficult to read and write:

public boolean isBoxedIn() {

if (!isFacingWall()) { // No wall in front

return false;

} else {

left(); // Check left wall

if (!isFacingWall()) { // No wall to left

right(); // Return to initial heading before return

return false;

} else {

left(); // Check back wall

if (!isFacingWall()) { // No wall in back

right();

right(); // Return to initial heading before return

return false;

} else {

left(); // Check right wall

if (!isFacingWall()) { // No wall to right

left(); // Return to initial heading before return

// (three rights is a left)

return false;

} else { // Surrounded by four walls

left(); // Return to initial heading before return.

return true;

}

}

}

}

}

A more compact way to check all four sides is to maintain the result in a boolean variable (here
named result) that is updated at every wall. This is simple to read and write, but is not as
efficient as the above approach because it continues to visit all headings even after finding a
missing wall.

public boolean isBoxedIn() {

boolean result = isFacingWall(); // Check front wall

left();

result = result && isFacingWall(); // Check left wall

left();

result = result && isFacingWall(); // Check back wall

left();

result = result && isFacingWall(); // Check right wall

left(); // Return to facing front wall

return result:

}

3

Problem 2: Invocation Trees

public class ExamPictureWorld extends PictureWorld {

public Picture meth1 (Picture a) {
Picture b = beside(a, empty());

return overlay(meth2(b), b);

}

public Picture meth2 (Picture c) {
return clockwise90(above(c, empty(), 0.75));

}
}

Figure 1: A sublcass of PictureWorld.

Consider the subclass of PictureWorld shown in Fig. 1. Supose that: EPW is an instance

of ExamPictureWorld, P0 is a Picture instance denoting the empty picture, P1 is a Picture
instance denoting the rightmost picture below:

ExamPictureWorld EPW

Picture P0 Picture P1

red blue

The dashed grid lines are not part of the pictures. They indicate coordinates within pictures. The
colors names are not part of picture P1 . They indicate the color of the two rectangles. Each of
the two rectangles is a solid color without any separately colored border.
On the next page, you are to draw an invocation tree that models the instance method invocation

EPW .meth1(P1). In the area labeled Execution Land, you should draw an invocation tree that
contains the following eight nodes, arranged appropriately into a tree. You should use each node
exactly once.

above(, ,): clockwise90(): empty(): meth2():

beside(,): empty(): meth1(): overlay(,):

The empty circles in the nodes are skeletons for object references that you should fill in with one
of the labels P0, P1, P2, P3, P4, or P5 to refer to the appropriate Picture instance in Object Land
(see below). A circle enclosed by parentheses is a reference to an actual argument of the method
invocation. A circle appearing after a colon is a reference to the result of the method invocation.
The root of the invocation tree is the meth1() node, which has already been drawn for you, and
whose actual argument has been filled in (you need to fill in its result).
In the area labeled Object Land are the skeletons for the six Picture instances that are used

during the execution. The pictures labeled P0 and P1 have already been drawn for you; you

should draw the pictures for P2 , P3 , P4 , and P5 . In each picture, you should label red areas
with the letter R and blue areas with the letter B. All other areas are presumed to be white.
(Note: for simplicity, the receiver object EPW for each of the method invocations has been

omitted. This instance has also been omitted from Object Land.)

4

Execution Land

meth1(P1): P5

empty(): P0

beside(P1 , P0): P2

meth2(P2): P4

empty(): P0

above(P2 , P0 ,0.75): P3

clockwise90(P3): P4

overlay(P4 , P2): P5

Object Land

Picture P0 Picture P1

R B

Picture P2

R B

Picture P3

R B

Picture P4

R

B

Picture P5

R

B

5

Problem 3: Java Execution Model

Consider the following two class definitions:

public class RelayRace extends BuggleWorld

{

public void run()

{

RelayRunner r1 = new RelayRunner();

RelayRunner r2 = new RelayRunner();

RelayRunner r3 = new RelayRunner();

r2.setColor(Color.green);

r3.setColor(Color.blue);

r1.firstLeg(3, r2,r3);

}

}

class RelayRunner extends Buggle

{

public void firstLeg(int length, RelayRunner next, RelayRunner last)

{

forward(length);

next.setPosition(this.getPosition());

next.secondLeg(length, last);

}

public void secondLeg(int length, RelayRunner next)

{

forward(length);

next.setPosition(this.getPosition());

next.thirdLeg(length);

}

public void thirdLeg(int length)

{

forward(length);

}

}

The final JEM is shown on the next page. This figure shows how each expression is evaluated to
produce a value. You were asked only to show the final state of the JEM, so you were not required
to show all this, however, it is very useful to do your JEMs this way so you can keep track of the
computation. This problem tested your knowledge of parameters, variables, and method invocation
in a very detailed way.
You were not required to remember that getPosition() and setPosition() make copies of

points, though that is what actually happens in BuggleWorld.

6

.run()

Point

x 1

y 1

P1

x 1

y 1

Point P2

r1 RUN1

C1

C1

C2

C2

C1

C2

RUN2

RUN2

RUN3

RUN3

RUN3
RUN2

RUN1

RUN1

RUN1 RUN2 RUN3

RUN1 RUN2

RUN1

P4

P4

P5

P5
RUN2

P6

P6

RUN3RUN2

RUN2 RUN3

RUN2

RUN3

RUN3next

RUN2

RUN2RUN3

RUN3

P7

P7

P8

P8

P9

P9

RUN3

RUN3
length 3 length 3

RUN3

P10

P10

RLAY

Object Land

Execution Land

RelayRace

RLAY

RelayRunner r3 = new RelayRunner();

this RLAY

RelayRunner r1 = new RelayRunner();
RelayRunner r2 = new RelayRunner();

green

blue

RelayRunner

position P2

heading EAST

color red

brushDown true

RelayRunner

position P1

heading EAST

color red

brushDown true
RelayRunner

position P3

heading EAST

color red

brushDown true

Point

x 4

y 1

Point

x 7

y 1

Point

x 7

y 1

Point

x 4

y 1

Point

x 7

y 1

Point

x 10

y 1

r2 RUN2 r3 RUN3

r2.setColor(Color.green);

r1.firstLeg(3, r2,r3);

r3.setColor(Color.blue);

.firstLeg(3, ,)

this length 3 next last

next.secondLeg(length, last);

next.setPosition(this.getPosition());

forward(length);
3

P3Point

x 1

y 1

Point

x 4

y 1

3

.secondLeg(3,)

this

this.forward(length);

next.setPosition(this.getPosition());

next.thirdLeg(length);

3

3

.thirdLeg(3)

this

this.forward(length);
3

7

