Four Big ideas

Programming ways
Fri. Sep. 8, 2006

q CS111 Computer Programming
| Y

Department of Computer Science
Wellesley College

What is Computer Science?

o If's not really about computers .
o If's not really a science.

o It's about imperative (*how to") knowledge as opposed to
declarative (*what is") knowledge.

o Imperative knowledge is expressed via algorithms =
computational recipes.

o "A computer language ... is a novel formal medium for
expressing ideas about methodology, not just a way to get a
computer to perform operations. Programs are written for
people to read, and only incidentally for machines to execute”

-- Harold Abelson and Gerald J. Sussman

Four big ideas

2-2

Four big ideas

o Four important concepts are
at the core of this course:
1. Abstraction;
2. Modularity;
3. Divide, Conquer and Glue;
4. Models

o These ideas are important in
almost every discipline, but
they're at the core of CS.

o Wewill illustrate these ideas
in several ways, including
Buggles.

o Our goal is to rewire your
brain to think in a new way.

Four big ideas 2-3

Big idea number 1: Abstraction

Contract

Implementer /

Designer

User / Client

Clas:
ass

Black Box

*Visit http://cs.wellesley.edu/~cslll/contracts for some useful Java contracts,
which are known as Application Programming Interfaces (APIs).

Four big ideas 2-4

Big idea number 2: Modularity

o Large systems are built
from components called
modules.

o The interfaces between
modules are designed so
they can be put together
in a mix-and-match way.

o InJava, goal is to design

classes for maximum
reusability.

Four big ideas 2-5
Big idea number 3: Divide, conquer & glue
Divide
problem P into subproblems.
Conquer P
each of the subproblems, & / \
Glue (combine) P, | [p,] [P,] [P,
the solutions to the L L l
subproblems into a solution
S forP. SJ S2\< j3 S4
S
Four big ideas 2-6

Big idea number 4: Models

(o]

Need simple models to understand complex artifacts and
behaviors.

Throughout this course, we will use a Java Execution Model
(JEM) to explain what happens when Java code is executed.

Motivational example (we'll understand this by the end of class):

Point p1 = new Point(1,2);

Point p2 = new Point(1,2);

Point p3 = p2;

pl.x = p2ly;

p2.y = p3.y.

// What are the coordinates of pl, p2, and p3 now?

Today we introduce one JEM aspect: ObjectlLand, the place
where Java objects “live”.

Four big ideas 2-7

Object-oriented Terminology

Object-oriented means we create and manipulate program objects.
Often represent things in the world (my car, you, becky the buggle).

Objects are things that can respond to messages. When an object
receives a message, it executes the corresponding method --- a named
sequence of instructions that describes some behavior of an object.

A class is a description of the shared characteristics of a group of
objects. It includes the properties (instance variables) and methods
the objects understand. E.g., a buggle's color or forward().

An object created based on the class description is an instance of the
class.

An object is mutable if the state of some of its properties can change
over time (e.g., Buggles, Points).

An object is immutable if none of its properties can ever change (e.g.
Colors, Directions).

Four big ideas 2-8

becky in BuggleWorld

> BuggleWorld

becky
the Buggle

- /

Four big ideas 2-9

Four properties of Buggles

o position: Where becky
sits, specified by an (x, y)
coordinate.

o heading: The compass
direction becky is facing.

o color: becky and her paint
brush's color.

o brushDown: Is becky
ready to paint?

*Collectively these four properties define the state of a Buggle.
Four big ideas 2-10

becky has company

betty

the Buggle

AN

N g

becky -
the Buggle

bernice

D

Four big ideas

the Buggle

2-11

A class of Buggles

o Aclass is a collection
of objects that have a
common "“shape” and
respond the same way
to a known set of
messages.

o Anobjectisan
instance of a class.

P b

bernice

cky

Four big ideas

2-12

Changing state

We change an object's

state by sending it
messages.

becky.forward() ;

becky.forward() ;

becky.left (),

betty.backward() ;

betty

bernice.brushDown () ;

bernice.forward () ;

bernice.forward () ;

berni

ce

beg

» -

Four big ideas

2-13

A class is described by

instance variables

that describe the

properties of each
class instance; and

instance methods

that are the messages

betty

to which an instance of

the class can respond.

berni

ce

beg

o I

Four big ideas

2-14

Becky buys a bagel

public class BreakfastWorld extends BuggleWorld
{
public void run ()
{
Buggle becky = new Buggle();
// becky goes outside

becky. forward(2) ;

N
becky.left() ; .

instance
becky. forward() ;

. messages
becky.right() ; from
becky. forward() ; Bugwe
becky.right() ; contract
becky. forward() ;

becky.left(); WV

// walks to the bagel
becky. forward (2) ;

// and chows down

becky.pickUpBagel () ;

} Four big ideas 2-15
Methods with arguments
o Some methods require additional information, passed as
arguments, when invoked.
becky.setColor (Color.yellow) ;
becky.forward (3) ;
Four big ideas 2-16

SCc 3

00 >—+0 3

< becky. forward() ;

The anatomy of a program

public class BreakfastWorld extends BuggleWorld

{
public void run ()

{

// becky goes outside
becky. forward (2) ;

constructing a new
Buggle becky = new Buggle(); « Buggle object

becky.left() ;

becky. forward() ;
becky.right() ;

becky.right() ;
becky. forward() ;

becky.left() ;
// walks to the bagel

becky. forward(2) ;

// and chows down

becky.pickUpBagel () ;

} // run() comments
} // class BreakfastWorld

Four big ideas 2-17
A Buggle is born
assignment statement
Buggle becky = new Buggle() ;
N J J
Y Y
variable declaration constructor method
Four big ideas 2-18

Behind the curtain

new invokes constructor method >

Buggle becky = new Buggle() ;

Declaration
variable

Buggle

Point

X

/ og .
E position E}/

assignment
connects the
two

becky

heading B“
color B\
brushDown

HH

Ly

Direction
\> EAST

Color
-

Four big ideas 2-19

A class is described by

instance variables
describe the
properties of each
class instance;

instance methods
are the messages to
which an instance of
the class can respond;
constructor method(s)
create new instances
of the class.

Buggle

brushDown

position B
heading E\> EAST

color B\

Direction

Color
-

Four big ideas 2-20

10

Buggle ¢

ode

class Buggle

{

private
private
private
private

public

public
public
public
public
public
public

Point position;
Direction heading;
Color color;
boolean brushDown;

Buggle() { ... }

void forward() {

void left() { ... }.

Color getColor () {
Point getPosition ()

{ ...}

instance
variables

:}’ constructor
method

} instance

void setColor(Color c) { ... }
void setPosition(Point p) { ... }

Four big ideas

methods

2-21

Are there classes other than Buggles?

o Yep!
o Javais

an object-oriented

language, which means

that programs construct
and manipulate objects
inside the computer that
represent objects in the
real world.

Every object belongs to a
class.*

21
Qe

*And these classes are desighed modularly. That's where

the real po

wer of oops programming lies.

Four big ideas

2-22

1

Point

. . *
Points are objects X
class Point
; v
public int x; instance
public int y; variables
publ%c Po%nt(int x, inty) { ... } }}(mnsWudbr
publ%c Po?nt() ! ...} methods
public Point(Point p) { ... }
. . . instance
public void setlLocation() { ... } methods
}

*The Point class represents a location in two-dimensional (x, y)
coordinate space.
Four big ideas 2-23

Beam me up Scotty

import java.awt.*;
public class EnterpriseWorld extends BuggleWorld
{

public void run()

{
- Buggle kirk = new Buggle();
Point transportRoom = new Point(4,5);
kirk.setPosition (transportRoom) ;
}

Four big ideas 2-24

12

Instance variables

public class EnterpriseWorld extends BuggleWorld
{

public void run()

{

Point transportRoom = new Point(4,5);

\e /

} } Point
Creates a new / transportRoom X
instance of the

class Point named Y
transportRoom

Four big ideas 2-25

A Klingon trick

public class EnterpriseWorld extends BuggleWorld
{

public void run()

{
Buggle kirk = new Buggle():;
Point transportRoom = new Point(4,5);
transportRoom.y = 1; // surprise kirk
kirk.setPosition (transportRoom) ;

Four big ideas 2-26

13

Another pair of instance variables

public class EnterpriseWorld extends BuggleWorld

{
public void run()
{
Point transportRoom = new Point(4,5);
Point planetSurface = new Point(5,1);
Point
} trans
portRoom 4
) x
y
Point
planetSurface X
y
Four big ideas 2-27
Objects inside of objects
Point
- x
uggle
/ Y
position Ef
Direction
heading E}—\, EAST
color []\\\\\fdor
brushDown
*What about contents of variables x and y inside of a Point object?
Are they objects too?
Four big ideas 2-28

14

A notational convenience

Point
Buggle .
position E(/)
heading
color
brushDown | true |

Four big ideas 2-29

Sometimes we abbreviate further still

Buggle
position
heading
color
brushDown

Four big ideas 2-30

15

