Fruitful Recursion
(recursion that returns a value)

Recall: fruitful functions and side effects

max, min, len, int

Recursion functions today:
sumUp factorial
countDownList fibRec
countUpList upperRightRepeat

print, help,

Recursive functions in last two lectures:
countDown spiral
countUp spiralBack
countDownUp tree
drawTarget treeRandom
drawNestedCircles
drawNestedCircles

Recursive functions today:
spiralLength
spiralCount
spiralTuple

How to write recursive functions?
Wishful thinking!

1. Consider a relatively small concrete example of the function, typically of size \(n = 3 \) or \(n = 4 \). What should it return?

 In this case, \(\text{sumUp} (4) \) should return \(4 + 3 + 2 + 1 = 10 \)

2. Without even thinking, apply the function to a smaller version of the problem. By wishful thinking, assume this “just works”.

 In this case, \(\text{sumUp} (3) \) should return \(3 + 2 + 1 = 6 \).

3. What glue can be used to combine the arguments of the big problem and the result of the smaller problem to yield the result for the big problem?

 In this case, \(\text{sumUp} (4) = 4 + \text{sumUp} (3) \)

4. Generalize the concrete example into the general case:

 In this case, \(\text{sumUp} (n) = n + \text{sumUp} (n-1) \)
What about the base case? Use the recursive case for the penultimate input

For example, what should \textit{sumUp}(0) return?

1. According to the recursive case:
 \textit{sumUp}(n) should return \(n + \textit{sumUp}(n-1) \)

2. Specialize the recursive case to the penultimate (next to last) input:
 \textit{sumUp}(1) should return \(1 + \textit{sumUp}(0) \)

3. Decide what should be returned for the penultimate input.
 In this case, \textit{sumUp}(1) should clearly return 1.

4. Deduce what should be returned for the base case.
 \textit{sumUp}(1) equals 1 equals \(1 + \textit{sumUp}(0) \), so \textit{sumUp}(0) should return 0

Here, 0 is the identity value for \(+\). Fruitful base cases are often identity values.

Defining \textit{sumUp}(n)

\begin{verbatim}
def sumUp(n):
 if n <= 0:
 return 0
 else:
 return n + sumUp(n-1)
\end{verbatim}

Compare this to \textit{countUp}(n):

\begin{verbatim}
def countUp(n):
 if n <= 0:
 pass
 else:
 countUp(n-1)
 print(n)
\end{verbatim}

Another view: \textit{sumUp}(4)

\begin{verbatim}
def sumUp(n):
 """returns sum of integers from 1 up to n""
 if n <= 0:
 return 0
 else:
 return n + sumUp(n-1)
\end{verbatim}

Yet Another view: \textit{sumUp}(4)

\begin{verbatim}
def sumUp(n):
 """returns sum of integers from 1 up to n""
 if n <= 0:
 return 0
 else:
 return n + sumUp(n-1)
\end{verbatim}

\begin{verbatim}
sumUp(4) => 4 + sumUp(3)
 => 4 + (3 + sumUp(2))
 => 4 + (3 + (2 + sumUp(1)))
 => 4 + (3 + (2 + (1 + sumUp(0))))
 => 4 + (3 + (2 + (1 + 0)))
 => 4 + (3 + (2 + 1))
 => 4 + (3 + 3)
 => 4 + 6
 => 10
\end{verbatim}

Fruitful Recursion 14-5

Fruitful Recursion 14-6

Fruitful Recursion 14-8

Fruitful Recursion 14-9
Call frame model for `sumUp(3)`

```python
def sumUp(n):
    """returns sum of integers from 1 up to n""
    if n <= 0:
        return 0
    else:
        return n + sumUp(n-1)
```

Fruitful Recursion 14-7
In Fruitful Recursion, Base Case(s) are Required

countUp(n) and sumUp(n) have similar structure:

```python
def countUp(n):
    if n <= 0:
        pass
    else:
        countUp(n-1)
        print(n)
def sumUp(n):
    if n <= 0:
        return 0
    else:
        return n + sumUp(n-1)
```

But for fruitful recursive functions like sumUp(n), no conditional branch can be eliminated, because a return value must be specified for the base case. Often it's an identity value for the glue.

For nonfruitful recursive functions like countUp(n), it's possible to eliminate the pass base case by rewriting the conditional, because else: pass does nothing.

Exercise 1: Factorial

\[n! = n \times (n-1) \times (n-2) \times \ldots \times 3 \times 2 \times 1 \]

Write a function that computes the factorial of \(n \) (using the same logic as sumUp).

General case by wishful thinking: \(n! = n \times (n-1)! \)

```python
def factorial(n):
    """Returns n! using recursion""
```

List of numbers from n down to 1

Define a function countDownList to return the list of numbers from \(n \) down to 1.

```python
countDownList(0) \rightarrow [ ]
countDownList(5) \rightarrow [5, 4, 3, 2, 1]
countDownList(8) \rightarrow [8, 7, 6, 5, 4, 3, 2, 1]
```

Apply the wishful thinking strategy on \(n = 4 \):
- countDownList(4) should return [4, 3, 2, 1]
- By wishful thinking, assume countDownList(3) returns [3, 2, 1]
- How to combine 4 and [3, 2, 1] to yield [4, 3, 2, 1]?
 - [4] + [3, 2, 1]
- Generalize: countDownList(n) = [n] + countDownList(n-1)
Exercise 2: Define `countDownList(n)`

```python
def countDownList(n):
    """Returns a list of numbers from n down to 1. For example, countDownList(5) returns [5,4,3,2,1]."""
    if n <= 0:
        return []
    else:
        return [n] + countDownList(n-1)
```

Exercise 3: Define `countDownListPrintResults(n)`

```python
def countDownListPrintResults(n):
    """Returns a list of numbers from n down to 1 and also prints each recursive result along the way."""
    if n <= 0:
        result = []
    else:
        result = [n] + countDownListPrintResults(n-1)
        print(result)
    return result
```

Exercise 4: Define `countUpList(n)`

```python
def countUpList(n):
    """Returns a list of numbers from 1 up to n. For example, countUpList(5) returns [1,2,3,4,5]."""
    if n <= 0:
        return []
    else:
        return countDownList(n-1) + [n]
```

Fruitful Spiraling

Recall the definition for having a turtle draw a spiral and return to its original position and orientation:

```python
def spiralBack(sideLen, angle, scaleFactor, minLength):
    """Draws a spiral based on the given parameters and brings the turtle back to its initial location and orientation."""
    if sideLen < minLength:
        pass
    else:
        fd(sideLen); lt(angle) # Put 2 stmts on 1 line with ;
        spiralBack(sideLen*scaleFactor, angle, scaleFactor, minLength)
        rt(angle); bk(sideLen)
```

How can we modify this function to return
(1) the total length of lines in the spiral;
(2) the number of lines in the spiral;
(3) both of the above numbers in a pair?
Exercise 5: spiralLength

```python
def spiralLength(sideLen, angle, scaleFactor, minLength):
    """Draws a spiral and returns the total length of the lines drawn."
    if sideLen < minLength:
        return
    else:
        fd(sideLen); lt(angle)
        subLen = spiralLength(sideLen*scaleFactor, angle, scaleFactor, minLength)
        rt(angle); bk(sideLen)
    return sideLen + subLen
```

- `spiralLength(100, 90, 0.5, 5) ➞ 193.7`
- `spiralLength(120, 60, 0.5, 5) ➞ 578.8893767467009`
- `spiralLength(512, 90, 0.5, 5) ➞ 1016`

Exercise 6: spiralCount

```python
def spiralCount(sideLen, angle, scaleFactor, minLength):
    """Draws a spiral and returns the total number of lines drawn."
    if sideLen < minLength:
        return
    else:
        fd(sideLen); lt(angle)
        subCount = spiralCount(sideLen*scaleFactor, angle, scaleFactor, minLength)
        rt(angle); bk(sideLen)
    return 1 + subCount
```

- `spiralCount(100, 90, 0.5, 5) ➞ 5`
- `spiralCount(120, 60, 0.5, 5) ➞ 15`
- `spiralCount(512, 90, 0.5, 5) ➞ 7`

Exercise 7: spiralTuple

```python
def spiralTuple(sideLen, angle, scaleFactor, minLength):
    """Draws a spiral and returns a pair of (1) the total length of the lines drawn and (2) the number of lines."
    if sideLen < minLength:
        return
    else:
        fd(sideLen); lt(angle)
        subLength, subCount = spiralCount(sideLen*scaleFactor, angle, scaleFactor, minLength)
        rt(angle); bk(sideLen)
    return subLength, subCount
```

- `spiralTuple(100, 90, 0.5, 5) ➞ (193.75, 5)`
- `spiralTuple(120, 60, 0.5, 5) ➞ (578.8893767467009, 15)`
- `spiralTuple(512, 90, 0.5, 5) ➞ (1016, 7)`

upperRightNest in PictureWorld

We have defined a function, `upperRightNest`, in `picture.py` that takes two pictures (200 x 200 graphics objects) and returns a picture with the second one overlaid in the upper right quadrant of the first.
Exercise 8: upperRightRepeat

```python
def upperRightRepeat(levels, pic):
    """Returns a picture containing the specified picture
    nested in the upper right corner of itself, the
    specified number of levels."""
    if levels <= 0:
        return empty()
    else:
        return upperRightNest(pic, upperRightRepeat(levels-1, pic))
```

Exercise 9: Fibonacci Numbers fib(n)

The n^{th} Fibonacci number $fib(n)$ is the number of pairs of rabbits alive in the n^{th} month.

Formula:

- $fib(0) = 0$; no pairs initially
- $fib(1) = 1$; 1 pair introduced the first month
- $fib(n) = fib(n-1) + fib(n-2)$; pairs never die, so live to next month

Now write the program:

```python
def fibRec(n):
    """Returns the $n$th Fibonacci number."""
    if n <= 1:
        return n
    else:
        return fibRec(n-1) + fibRec(n-2)
Fibonacci: Efficiency

How long would it take to calculate \( \text{fibRec}(100) \)?

Is there a better way to calculate Fibonacci numbers?

Iteration leads to a more efficient \( \text{fib}(n) \)

The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Iteration table for calculating the 8th Fibonacci number:

<table>
<thead>
<tr>
<th>i</th>
<th>( \text{fibi} )</th>
<th>( \text{fibi_next} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>34</td>
</tr>
</tbody>
</table>

Exercise 10: \( \text{fibLoop}(n) \)

Use iteration to calculate Fibonacci numbers more efficiently:

```python
def fibLoop(n):
 '''Returns the nth Fibonacci number.'''
 fibi = 0
 fibi_next = 1
 for i in range(1, n+1):
 fibi, fibi_next = fibi_next, fibi + fibi_next
 # tuple assignment simultaneously updates state
 return fibi
```