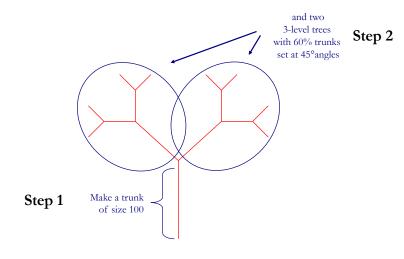
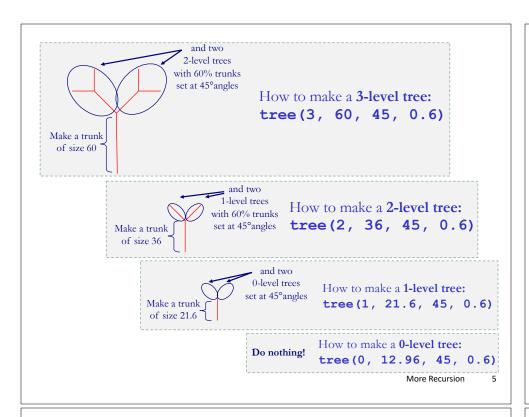

More Recursion

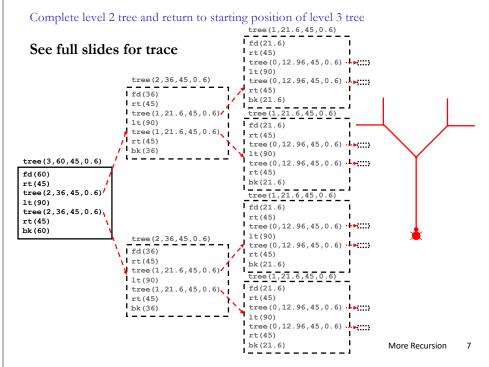
CS111 Computer Programming

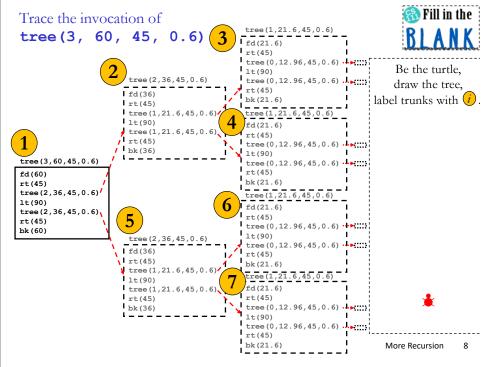
Department of Computer Science Wellesley College




Draw a tree recursively

tree(levels, trunkLen, angle, shrinkFactor)


- **levels** is the number of branches on any path from the root to a leaf
- **trunkLen** is the length of the base trunk of the tree
- angle is the angle from the trunk for each subtree
- **shrinkFactor** is the shrinking factor for each subtree


How to make a 4-level tree: tree (4, 100, 45, 0.6)


```
def tree(levels, trunkLen, angle, shrinkFactor):
   """Draw a 2-branch tree recursively.
   levels: number of branches on any path
            from the root to a leaf
   trunkLen: length of the base trunk of the tree
   angle: angle from the trunk for each subtree
   shrinkFactor: shrinking factor for each subtree
   if levels > 0:
      # Draw the trunk.
      fd(trunkLen)
      # Turn and draw the right subtree.
      rt(angle)
      tree(levels-1, trunkLen*shrinkFactor, angle, shrinkFactor)
      # Turn and draw the left subtree.
      lt(angle * 2)
      tree(levels-1, trunkLen*shrinkFactor, angle, shrinkFactor)
      # Turn back and back up to root without drawing.
      rt(angle)
      pu()
      bk(trunkLen)
      pd()
                                                   More Recursion
```



The squirrels aren't fooled...

More Recursion

_

Random Trees


```
def treeRandom(length, minLength, thickness, minThickness,
              minAngle, maxAngle, minShrink, maxShrink):
   if (length < minLength) or (thickness < minThickness): # Base case
       pass # Do nothing
   else:
       angle1 = random.uniform(minAngle, maxAngle)
       angle2 = random.uniform(minAngle, maxAngle)
       shrink1 = random.uniform(minShrink, maxShrink)
       shrink2 = random.uniform(minShrink, maxShrink)
       pensize(thickness)
       fd(length)
       rt(angle1)
        treeRandom(length*shrink1, minLength, thickness*shrink1,
                   minThickness, minAngle, maxAngle, minShrink, maxShrink)
       lt(angle1 + angle2)
        treeRandom(length*shrink2, minLength, thickness*shrink2,
                   minThickness, minAngle, maxAngle, minShrink, maxShrink)
       rt(angle2)
       pensize(thickness)
       bk(length)
                                                               More Recursion 10
```

Fruitful Trees

As with spiral, we can return counts of the drawings we make using fruitful recursion. Try this example below in the notebook and check the notebook solution for answers.

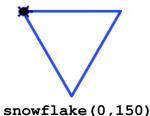
Drawing fractals – Koch Curve

koch(levels, size)

koch(0, 150)

koch(1, 150)

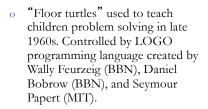
koch(2, 150)

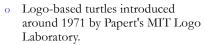


koch(3, 150)

Snowflakes

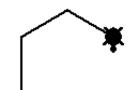
snowflake(2,150)


snowflake(3,150)


Borders

More Recursion

1.


Turtle Ancestry

Turtles play a key role in "constructionist learning" philosophy espoused by Papert in *Mindstorms* (1980).

More Recursion

1/

Turtle Ancestry (cont'd)

- Richard Pattis's Karel the Robot (1981) teaches problem-solving using Pascal robots that manipulate beepers in a grid world.
- o Turtle Geometry book by Andrea diSessa and Hal Abelson (1986).
- o LEGO/Logo project at MIT (Mitchel Resnick and Steve Ocko, 1988); evolves into Handyboards (Fred Martin and Brian Silverman), Crickets (Robbie Berg @ Wellesley), and LEGO Mindstorms
- o StarLogo programming with thousands of turtles in Resnick's *Turtles, Termites, and Traffic Jams* (1997).

More Recursion

4-

Turtles, Buggles, & Friends At Welles Perer

- o In mid-1980s, Eric Roberts teaches programming using software-based turtles.
- In 1996, Robbie Berg and Lyn Turbak start teaching Robotic Design Studio with Sciborgs.
- In 1996, Randy Shull and Takis Metaxas use turtles to teach problem solving in CS110.
- In 1997, BuggleWorld introduced by Lyn Turbak when CS111 switches from Pascal to Java. Turtles are also used in the course
- o In 2006, Robbie Berg and others introduce PICO Crickets:

http://www.picocricket.com

 In 2011, Lyn Turbak and the TinkerBlocks group introduce TurtleBlocks, a blocksbased turtle language whose designs can be turned into physical artifacts with laser and vinyl cutters.

List of numbers from n down to 1

Define a function countDownList to return the list of numbers from n down to 1

```
countDownList(0) \rightarrow []
countDownList(5) \rightarrow [5, 4, 3, 2, 1]
countDownList(8) \rightarrow [8, 7, 6, 5, 4, 3, 2, 1]
```

Apply the wishful thinking strategy on n = 4:

- countDownList(4) should return [4, 3, 2, 1]
- By wishful thinking, assume countDownList(3) returns [3, 2, 1]
- How to combine 4 and [3, 2, 1] to yield [4, 3, 2, 1]?
 [4] + [3, 2, 1]
- Generalize: countDownList(n) = [n] + countDownList(n-1)

More Recursion 17

countDownList(n)

```
def countDownList(n):
    """Returns a list of numbers from n down to 1.
    For example, countDownList(5) returns
    [5,4,3,2,1]."""
    if n <= 0:
        return []
    else:
        return [n] + countDownList(n-1)</pre>
```

More Recursion 18

Exercise:

Define countDownListPrintResults(n)


```
def countDownListPrintResults(n):
```

```
"""Returns a list of numbers from n down to 1
   and also prints each recursive result along
   the way."""
if n <= 0:
   print([])
   result = []
else:
   result = [n] + countDownListPrintResults(n-1)
   print(result)
   return result</pre>
```

Exercise: Define countUpList(n)


```
def countUpList(n):
    """Returns a list of numbers from 1 up to n.
    For example, countUpList(5) returns
    [1,2,3,4,5]."""
    if n <= 0:
        return []
    else:
        return countUpList(n-1) + [n]</pre>
```

More Recursion 19

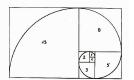
Leonardo Pisano Fibonacci counts Rabbits

<u>Month</u>	# Pairs	Assume: • Start with one pair of newborn rabbits in month 1.
0	0	Newborn rabbits become sexually mature after 1 month.
1	1	Sexually mature pairs produce 1 new pair at the end of every month . Rabbits never die.
2	1	Rabbits never die.
3	2	
4	3	
5	5	
6	8	Will Was a Company of the Company of

Exercise: Fibonacci Numbers fib(n)

The \mathbf{n}^{th} Fibonacci number fib(n) is the number of pairs of rabbits alive in the \mathbf{n}^{th} month.

Formula:

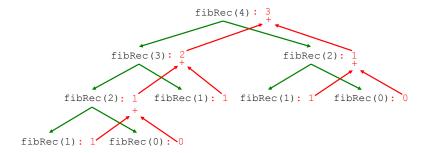

fib(0) = 0; no pairs initially

fib(1) = 1; 1 pair introduced the first month

fib(n) = fib(n-1); pairs never die, so live to next month + fib(n-2); all sexually mature pairs produce ; a pair each month

Now write the program:

```
def fibRec(n):
    '''Returns the nth Fibonacci number.'''
    if n <= 1:
        return n
    else:
        return fibRec(n-1) + fibRec(n-2)</pre>
```



More Recursion 22

Fibonacci: Efficiency

How long would it take to calculate fibRec(100)?

Is there a better way to calculate Fibonacci numbers?

Iteration leads to a more efficient fib(n)

The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Iteration table for calculating the 8th Fibonacci number:

i	fibi	fibi_next
0	0	1
1	1	1
2	1	2
3	2	3
4	3	5
5	5	8
6	8	13
7	13	21
8	21	34

Exercise: fibLoop(n)

Use iteration to calculate Fibonacci numbers more efficiently:

i	fibi	fibi_next
0	0	1
1	1	1
2	1	2
3	2	3
4	3	5
5	5	8
6	8	13
7	13	21
8	21	34

```
def fibLoop(n):
    '''Returns the nth Fibonacci number.'''
    fibi = 0
    fibi next = 1
    for \overline{i} in range(1, n+1):
        fibi, fibi_next = fibi_next, fibi+fibi_next
        # tuple assignment simultaneously updates state
    return fibi
```

	1		
your turn			
vars			