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tree(7, 75, 30, 0.8)

tree(10, 80, 45, 0.7) tree(10, 100, 90, 0.68)

tree(7, 75, 15, 0.8)
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Trees



Draw a tree recursively

tree(levels, trunkLen, angle, shrinkFactor)

• levels is the number of  branches on any path from the root 
to a leaf

• trunkLen is the length of  the base trunk of  the tree
• angle is the angle from the trunk for each subtree
• shrinkFactor is the shrinking factor for each subtree
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How to make a 4-level tree: 
tree(4, 100, 45, 0.6)

Make a trunk
of  size 100

and two
3-level trees 

with 60% trunks 
set at 45°angles
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Step 1

Step 2



Make a trunk
of  size 60

and two
2-level trees

with 60% trunks
set at 45°angles

How to make a 3-level tree: 
tree(3, 60, 45, 0.6)
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How to make a 2-level tree: 
tree(2, 36, 45, 0.6)Make a trunk

of  size 36

and two
1-level trees

with 60% trunks
set at 45°angles

Make a trunk
of  size 21.6

and two
0-level trees

set at 45°angles
How to make a 1-level tree: 
tree(1, 21.6, 45, 0.6)

How to make a 0-level tree: 
tree(0, 12.96, 45, 0.6)Do nothing!
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def tree(levels, trunkLen, angle, shrinkFactor):
"""Draw a 2-branch tree recursively.

levels: number of branches on any path
from the root to a leaf

trunkLen: length of the base trunk of the tree
angle: angle from the trunk for each subtree
shrinkFactor: shrinking factor for each subtree
"""
if levels > 0:

# Draw the trunk.
fd(trunkLen)
# Turn and draw the right subtree.
rt(angle)
tree(levels-1, trunkLen*shrinkFactor, angle, shrinkFactor)
# Turn and draw the left subtree.
lt(angle * 2)
tree(levels-1, trunkLen*shrinkFactor, angle, shrinkFactor)
# Turn back and back up to root without drawing.
rt(angle)
pu()
bk(trunkLen)
pd()



Tracing the invocation of  
tree(3,60,45,0.6)

tree(3,60,45,0.6)
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Draw trunk and turn to draw level 2 tree

fd(60)
rt(45)

tree(3,60,45,0.6)
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Begin recursive invocation to draw level 2 tree

fd(60)
rt(45)
tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(3,60,45,0.6)
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Draw trunk and turn to draw level 1 tree

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(36)
rt(45)

tree(2,36,45,0.6)

tree(3,60,45,0.6)
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fd(60)
rt(45)
tree(2,36,45,0.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Begin recursive invocation to draw level 1 tree
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fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Draw trunk and turn to draw level 0 tree
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fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Begin recursive invocation to draw level 0 tree
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fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 0 tree and turn to draw another level 0 tree
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fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Begin recursive invocation to draw level 0 tree
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fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 0 tree and return to starting position of level 1 tree
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fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 1 tree and turn to draw another level 1 tree
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fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Begin recursive invocation to draw level 1 tree
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fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)

fd(21.6)
rt(45)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Draw trunk and turn to draw level 0 tree
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fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete two level 0 trees and return to starting position of level 1 tree
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fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 1 tree and return to starting position of level 2 tree
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fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 2 tree and turn to draw another level 2 tree
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fd(36)
rt(45)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Draw trunk and turn to draw level 1 tree

23More Recursion



fd(21.6)
rt(45)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Draw trunk and turn to draw level 0 tree
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fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete two level 0 trees and return to starting position of level 1 tree
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fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 1 tree and turn to draw another level 1 tree
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fd(21.6)
rt(45)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Draw trunk and turn to draw level 0 tree
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fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete two level 0 trees and return to starting position of level 1 tree
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fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 1 tree and return to starting position of level 2 tree
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fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

Complete level 2 tree and return to starting position of level 3 tree

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)
rt(45)
bk(60)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)
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fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

Trace the invocation of
tree(3, 60, 45, 0.6)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)
rt(45)
bk(60)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)
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Be the turtle,
draw the tree,

label trunks with      .

1

2
3

6
5

4

7

i



The squirrels aren't fooled…
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def treeRandom(length, minLength, thickness, minThickness, 
minAngle, maxAngle, minShrink, maxShrink):

if (length < minLength) or (thickness < minThickness): # Base case
pass # Do nothing

else:
angle1 = random.uniform(minAngle, maxAngle)
angle2 = random.uniform(minAngle, maxAngle)
shrink1 = random.uniform(minShrink, maxShrink)
shrink2 = random.uniform(minShrink, maxShrink)
pensize(thickness)
fd(length)
rt(angle1)
treeRandom(length*shrink1, minLength, thickness*shrink1,

minThickness, minAngle, maxAngle, minShrink, maxShrink)
lt(angle1 + angle2)
treeRandom(length*shrink2, minLength, thickness*shrink2, 

minThickness, minAngle, maxAngle, minShrink, maxShrink)
rt(angle2)
pensize(thickness)
bk(length)

Random Trees
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Fruitful Trees
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def branchCount(levels, trunkLen, angle, shrinkFactor):
"""Draw a 2-branch tree recursively and returns a
count of the branches.
levels: number of branches on any path

from the root to a leaf
trunkLen: length of the base trunk of the tree
angle: angle from the trunk for each subtree
shrinkFactor: shrinking factor for each subtree
"""
# your code here

As with spiral, we can return counts of the drawings we make
using fruitful recursion.  Try this example below in the notebook 
and check the notebook solution for answers.



Drawing fractals – Koch Curve

koch(levels, size)

koch(0, 150)

koch(1, 150)

koch(2, 150)

koch(3, 150)
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Snowflakes

snowflake(0,150)

snowflake(1,150) snowflake(3,150)

snowflake(2,150)
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Turtle Ancestry
o �Floor turtles� used to teach 

children problem solving in late 
1960s. Controlled by LOGO 
programming language created by 
Wally Feurzeig (BBN), Daniel  
Bobrow (BBN), and Seymour 
Papert (MIT).

o Logo-based turtles introduced 
around 1971 by Papert's MIT Logo 
Laboratory. 

o Turtles play a key role in 
�constructionist learning�
philosophy espoused by Papert in 
Mindstorms (1980). 
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Turtle Ancestry (cont�d)
o Richard Pattis�s Karel the Robot (1981) 

teaches problem-solving using Pascal 
robots that manipulate beepers in a grid 
world. 

o Turtle Geometry book by Andrea diSessa and 
Hal Abelson (1986). 

o LEGO/Logo project at MIT (Mitchel 
Resnick and Steve Ocko, 1988); evolves 
into Handyboards (Fred Martin and Brian 
Silverman), Crickets (Robbie Berg @ 
Wellesley), and LEGO Mindstorms

o StarLogo – programming with thousands of 
turtles in  Resnick�s Turtles, Termites, and 
Traffic Jams (1997).
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Turtles, Buggles, & Friends At Wellesley
o In mid-1980s, Eric Roberts teaches 

programming using software-based turtles. 
o In 1996, Robbie Berg and Lyn Turbak 

start teaching Robotic Design Studio with 
Sciborgs.

o In 1996, Randy Shull and Takis Metaxas 
use turtles to teach problem solving in 
CS110. 

o In 1997, BuggleWorld introduced by Lyn 
Turbak when CS111 switches from Pascal 
to Java. Turtles are also used in the course

o In 2006, Robbie Berg and others introduce 
PICO Crickets:
http://www.picocricket.com

o In 2011, Lyn Turbak and the TinkerBlocks 
group introduce TurtleBlocks, a blocks-
based turtle language whose designs can be 
turned into physical artifacts with laser and 
vinyl cutters. 

39More Recursion

http://www.picocricket.com


List of numbers from n down to 1

Define a function countDownList to return the list of 
numbers from n down to 1

countDownList(0) à [ ]
countDownList(5) à [5, 4, 3, 2, 1]
countDownList(8) à [8, 7, 6, 5, 4, 3, 2, 1]

More Recursion

Apply the wishful thinking strategy on n = 4:
• countDownList(4) should return [4, 3, 2, 1]
• By wishful thinking, assume countDownList(3) returns  [3, 2, 1]
• How to combine 4 and [3, 2, 1] to yield [4, 3, 2, 1]?

[4] + [3, 2, 1]
• Generalize: countDownList(n) = [n] + countDownList(n-1)
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countDownList(n)

More Recursion

def countDownList(n):
"""Returns a list of numbers from n down to 1.

For example, countDownList(5) returns 
[5,4,3,2,1]."""

if n <= 0:
return []

else: 
return [n] + countDownList(n-1)
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Exercise: 
Define countDownListPrintResults(n)

More Recursion

def countDownListPrintResults(n):
"""Returns a list of numbers from n down to 1

and also prints each recursive result along
the way."""

if n <= 0:
print([])
result = []

else: 
result = [n] + countDownListPrintResults(n-1)
print(result)
return result
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Exercise: Define countUpList(n)

More Recursion

def countUpList(n):
"""Returns a list of numbers from 1 up to n.

For example, countUpList(5) returns 
[1,2,3,4,5]."""

if n <= 0:
return []

else: 
return countUpList(n-1) + [n]
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11-44

Leonardo Pisano Fibonacci counts Rabbits

Month # Pairs

0 0

1 1

2 1

3 2

4 3

5 5

6 8

Assume:
• Start with one pair of  newborn rabbits in month 1.
• Newborn rabbits become sexually mature after 1 
month.
• Sexually mature pairs produce 1 new pair at the 
end of  every month .
• Rabbits never die.   
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Exercise: Fibonacci Numbers fib(n)

def fibRec(n):
'''Returns the nth Fibonacci number.'''
if n <= 1:

return n
else:

return fibRec(n-1) + fibRec(n-2)

The nth Fibonacci number fib(n) is the number of
pairs of  rabbits alive in the nth month. 

Formula:
fib(0) = 0 ; no pairs initially
fib(1) = 1 ; 1 pair introduced the first month
fib(n) = fib(n-1) ; pairs never die, so live to next month

+ fib(n-2) ; all sexually mature pairs produce
; a pair each month

Now write the program:
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fibRec(0)

Fibonacci: Efficiency

How long would it take to calculate fibRec(100)? 

More Recursion

fibRec(4)

: 1 : 0fibRec(1)

: 1 : 0fibRec(1) fibRec(0)

: 1fibRec(2) fibRec(1)

fibRec(3) fibRec(2)

: 1
+

: 2
+ : 1

+

: 3
+

Is there a better way to calculate Fibonacci numbers? 
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Iteration leads to a more efficient fib(n) 
The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, …

Iteration table for calculating the 8th Fibonacci  number:

i fibi fibi_next

0 0 1

1 1 1

2 1 2

3 2 3

4 3 5

5 5 8

6 8 13

7 13 21

8 21 34
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Exercise: fibLoop(n)
Use iteration to calculate Fibonacci 
numbers more efficiently:

i fibi fibi_next

0 0 1

1 1 1

2 1 2

3 2 3

4 3 5

5 5 8

6 8 13

7 13 21

8 21 34

More Recursion

def fibLoop(n):
'''Returns the nth Fibonacci number.'''
fibi = 0
fibi_next = 1
for i in range(1, n+1):

fibi, fibi_next = fibi_next, fibi+fibi_next
# tuple assignment simultaneously updates state vars

return fibi
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