
CS111 Computer Programming

Department of Computer Science
Wellesley College

More Recursion

tree(7, 75, 30, 0.8)

tree(10, 80, 45, 0.7) tree(10, 100, 90, 0.68)

tree(7, 75, 15, 0.8)

2More Recursion

Trees

Draw a tree recursively

tree(levels, trunkLen, angle, shrinkFactor)

• levels is the number of branches on any path from the root
to a leaf

• trunkLen is the length of the base trunk of the tree
• angle is the angle from the trunk for each subtree
• shrinkFactor is the shrinking factor for each subtree

3More Recursion

How to make a 4-level tree:
tree(4, 100, 45, 0.6)

Make a trunk
of size 100

and two
3-level trees

with 60% trunks
set at 45°angles

4More Recursion

Step 1

Step 2

Make a trunk
of size 60

and two
2-level trees

with 60% trunks
set at 45°angles

How to make a 3-level tree:
tree(3, 60, 45, 0.6)

5More Recursion

How to make a 2-level tree:
tree(2, 36, 45, 0.6)Make a trunk

of size 36

and two
1-level trees

with 60% trunks
set at 45°angles

Make a trunk
of size 21.6

and two
0-level trees

set at 45°angles
How to make a 1-level tree:
tree(1, 21.6, 45, 0.6)

How to make a 0-level tree:
tree(0, 12.96, 45, 0.6)Do nothing!

6More Recursion

def tree(levels, trunkLen, angle, shrinkFactor):
"""Draw a 2-branch tree recursively.

levels: number of branches on any path
from the root to a leaf

trunkLen: length of the base trunk of the tree
angle: angle from the trunk for each subtree
shrinkFactor: shrinking factor for each subtree
"""
if levels > 0:

Draw the trunk.
fd(trunkLen)
Turn and draw the right subtree.
rt(angle)
tree(levels-1, trunkLen*shrinkFactor, angle, shrinkFactor)
Turn and draw the left subtree.
lt(angle * 2)
tree(levels-1, trunkLen*shrinkFactor, angle, shrinkFactor)
Turn back and back up to root without drawing.
rt(angle)
pu()
bk(trunkLen)
pd()

Tracing the invocation of
tree(3,60,45,0.6)

tree(3,60,45,0.6)

7More Recursion

Draw trunk and turn to draw level 2 tree

fd(60)
rt(45)

tree(3,60,45,0.6)

8More Recursion

Begin recursive invocation to draw level 2 tree

fd(60)
rt(45)
tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(3,60,45,0.6)

9More Recursion

Draw trunk and turn to draw level 1 tree

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(36)
rt(45)

tree(2,36,45,0.6)

tree(3,60,45,0.6)

10More Recursion

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Begin recursive invocation to draw level 1 tree

11More Recursion

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Draw trunk and turn to draw level 0 tree

12More Recursion

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Begin recursive invocation to draw level 0 tree

13More Recursion

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 0 tree and turn to draw another level 0 tree

More Recursion 14

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Begin recursive invocation to draw level 0 tree

15More Recursion

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 0 tree and return to starting position of level 1 tree

16More Recursion

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 1 tree and turn to draw another level 1 tree

17More Recursion

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Begin recursive invocation to draw level 1 tree

18More Recursion

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)

fd(21.6)
rt(45)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Draw trunk and turn to draw level 0 tree

19More Recursion

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete two level 0 trees and return to starting position of level 1 tree

20More Recursion

fd(60)
rt(45)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 1 tree and return to starting position of level 2 tree

21More Recursion

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 2 tree and turn to draw another level 2 tree

22More Recursion

fd(36)
rt(45)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Draw trunk and turn to draw level 1 tree

23More Recursion

fd(21.6)
rt(45)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Draw trunk and turn to draw level 0 tree

24More Recursion

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete two level 0 trees and return to starting position of level 1 tree

25More Recursion

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 1 tree and turn to draw another level 1 tree

26More Recursion

fd(21.6)
rt(45)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Draw trunk and turn to draw level 0 tree

27More Recursion

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete two level 0 trees and return to starting position of level 1 tree

28More Recursion

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

Complete level 1 tree and return to starting position of level 2 tree

29More Recursion

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

Complete level 2 tree and return to starting position of level 3 tree

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)
rt(45)
bk(60)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

30More Recursion

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

fd(36)
rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

Trace the invocation of
tree(3, 60, 45, 0.6)

fd(60)
rt(45)
tree(2,36,45,0.6)
lt(90)
tree(2,36,45,0.6)
rt(45)
bk(60)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)fd(36)

rt(45)
tree(1,21.6,45,0.6)
lt(90)
tree(1,21.6,45,0.6)
rt(45)
bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)

tree(2,36,45,0.6)

tree(2,36,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(1,21.6,45,0.6)

tree(3,60,45,0.6)

31More Recursion

Be the turtle,
draw the tree,

label trunks with .

1

2
3

6
5

4

7

i

The squirrels aren't fooled…

32More Recursion

def treeRandom(length, minLength, thickness, minThickness,
minAngle, maxAngle, minShrink, maxShrink):

if (length < minLength) or (thickness < minThickness): # Base case
pass # Do nothing

else:
angle1 = random.uniform(minAngle, maxAngle)
angle2 = random.uniform(minAngle, maxAngle)
shrink1 = random.uniform(minShrink, maxShrink)
shrink2 = random.uniform(minShrink, maxShrink)
pensize(thickness)
fd(length)
rt(angle1)
treeRandom(length*shrink1, minLength, thickness*shrink1,

minThickness, minAngle, maxAngle, minShrink, maxShrink)
lt(angle1 + angle2)
treeRandom(length*shrink2, minLength, thickness*shrink2,

minThickness, minAngle, maxAngle, minShrink, maxShrink)
rt(angle2)
pensize(thickness)
bk(length)

Random Trees

33More Recursion

Fruitful Trees

34More Recursion

def branchCount(levels, trunkLen, angle, shrinkFactor):
"""Draw a 2-branch tree recursively and returns a
count of the branches.
levels: number of branches on any path

from the root to a leaf
trunkLen: length of the base trunk of the tree
angle: angle from the trunk for each subtree
shrinkFactor: shrinking factor for each subtree
"""
your code here

As with spiral, we can return counts of the drawings we make
using fruitful recursion. Try this example below in the notebook
and check the notebook solution for answers.

Drawing fractals – Koch Curve

koch(levels, size)

koch(0, 150)

koch(1, 150)

koch(2, 150)

koch(3, 150)

35More Recursion

Snowflakes

snowflake(0,150)

snowflake(1,150) snowflake(3,150)

snowflake(2,150)

36More Recursion

Turtle Ancestry
o �Floor turtles� used to teach

children problem solving in late
1960s. Controlled by LOGO
programming language created by
Wally Feurzeig (BBN), Daniel
Bobrow (BBN), and Seymour
Papert (MIT).

o Logo-based turtles introduced
around 1971 by Papert's MIT Logo
Laboratory.

o Turtles play a key role in
�constructionist learning�
philosophy espoused by Papert in
Mindstorms (1980).

37More Recursion

Turtle Ancestry (cont�d)
o Richard Pattis�s Karel the Robot (1981)

teaches problem-solving using Pascal
robots that manipulate beepers in a grid
world.

o Turtle Geometry book by Andrea diSessa and
Hal Abelson (1986).

o LEGO/Logo project at MIT (Mitchel
Resnick and Steve Ocko, 1988); evolves
into Handyboards (Fred Martin and Brian
Silverman), Crickets (Robbie Berg @
Wellesley), and LEGO Mindstorms

o StarLogo – programming with thousands of
turtles in Resnick�s Turtles, Termites, and
Traffic Jams (1997).

38More Recursion

Turtles, Buggles, & Friends At Wellesley
o In mid-1980s, Eric Roberts teaches

programming using software-based turtles.
o In 1996, Robbie Berg and Lyn Turbak

start teaching Robotic Design Studio with
Sciborgs.

o In 1996, Randy Shull and Takis Metaxas
use turtles to teach problem solving in
CS110.

o In 1997, BuggleWorld introduced by Lyn
Turbak when CS111 switches from Pascal
to Java. Turtles are also used in the course

o In 2006, Robbie Berg and others introduce
PICO Crickets:
http://www.picocricket.com

o In 2011, Lyn Turbak and the TinkerBlocks
group introduce TurtleBlocks, a blocks-
based turtle language whose designs can be
turned into physical artifacts with laser and
vinyl cutters.

39More Recursion

http://www.picocricket.com

List of numbers from n down to 1

Define a function countDownList to return the list of
numbers from n down to 1

countDownList(0) à []
countDownList(5) à [5, 4, 3, 2, 1]
countDownList(8) à [8, 7, 6, 5, 4, 3, 2, 1]

More Recursion

Apply the wishful thinking strategy on n = 4:
• countDownList(4) should return [4, 3, 2, 1]
• By wishful thinking, assume countDownList(3) returns [3, 2, 1]
• How to combine 4 and [3, 2, 1] to yield [4, 3, 2, 1]?

[4] + [3, 2, 1]
• Generalize: countDownList(n) = [n] + countDownList(n-1)

40

countDownList(n)

More Recursion

def countDownList(n):
"""Returns a list of numbers from n down to 1.

For example, countDownList(5) returns
[5,4,3,2,1]."""

if n <= 0:
return []

else:
return [n] + countDownList(n-1)

41

Exercise:
Define countDownListPrintResults(n)

More Recursion

def countDownListPrintResults(n):
"""Returns a list of numbers from n down to 1

and also prints each recursive result along
the way."""

if n <= 0:
print([])
result = []

else:
result = [n] + countDownListPrintResults(n-1)
print(result)
return result

42

Exercise: Define countUpList(n)

More Recursion

def countUpList(n):
"""Returns a list of numbers from 1 up to n.

For example, countUpList(5) returns
[1,2,3,4,5]."""

if n <= 0:
return []

else:
return countUpList(n-1) + [n]

43

11-44

Leonardo Pisano Fibonacci counts Rabbits

Month # Pairs

0 0

1 1

2 1

3 2

4 3

5 5

6 8

Assume:
• Start with one pair of newborn rabbits in month 1.
• Newborn rabbits become sexually mature after 1
month.
• Sexually mature pairs produce 1 new pair at the
end of every month .
• Rabbits never die.

More Recursion 44

Exercise: Fibonacci Numbers fib(n)

def fibRec(n):
'''Returns the nth Fibonacci number.'''
if n <= 1:

return n
else:

return fibRec(n-1) + fibRec(n-2)

The nth Fibonacci number fib(n) is the number of
pairs of rabbits alive in the nth month.

Formula:
fib(0) = 0 ; no pairs initially
fib(1) = 1 ; 1 pair introduced the first month
fib(n) = fib(n-1) ; pairs never die, so live to next month

+ fib(n-2) ; all sexually mature pairs produce
; a pair each month

Now write the program:

More Recursion 45

fibRec(0)

Fibonacci: Efficiency

How long would it take to calculate fibRec(100)?

More Recursion

fibRec(4)

: 1 : 0fibRec(1)

: 1 : 0fibRec(1) fibRec(0)

: 1fibRec(2) fibRec(1)

fibRec(3) fibRec(2)

: 1
+

: 2
+ : 1

+

: 3
+

Is there a better way to calculate Fibonacci numbers?

46

Iteration leads to a more efficient fib(n)
The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, …

Iteration table for calculating the 8th Fibonacci number:

i fibi fibi_next

0 0 1

1 1 1

2 1 2

3 2 3

4 3 5

5 5 8

6 8 13

7 13 21

8 21 34

More Recursion 47

Exercise: fibLoop(n)
Use iteration to calculate Fibonacci
numbers more efficiently:

i fibi fibi_next

0 0 1

1 1 1

2 1 2

3 2 3

4 3 5

5 5 8

6 8 13

7 13 21

8 21 34

More Recursion

def fibLoop(n):
'''Returns the nth Fibonacci number.'''
fibi = 0
fibi_next = 1
for i in range(1, n+1):

fibi, fibi_next = fibi_next, fibi+fibi_next
tuple assignment simultaneously updates state vars

return fibi
48

