
CS111 Computer Programming

Department of Computer Science
Wellesley College

List Processing Patterns

2

Review: Lists

A list is a sequence type (like strings and tuples), but is mutable (it can change). Lists can
store elements of different types (e.g., numbers, booleans, strings). Lists can be nested to
create a list of lists. They are usually homogeneous (all elements of the same type), but
Python allows heterogeneous lists too. A list with no elements is called an empty list.

primes = [2,3,5,7,11,13,17,19] # List of primes less than 20
bools = [1<2, 1==2, 1>2] # List of booleans
houses = ['Gryffindor', 'Hufflepuff', 'Ravenclaw', 'Slytherin']
strings = ['ab' + 'cd', 'ma'*4]
people = ['Hermione Granger', 'Harry Potter',

'Ron Weasley', 'Luna Lovegood']

A list of string lists
animalLists = [['duck', 'raccoon'],

['fox', 'raven', 'gosling'], [], ['turkey']]

A heterogeneous list
stuff = [17, True, 'foo', None, [42, False, 'bar']]

empty = [] # An empty list
List Patterns

Concepts in this slide:
Summary of what we
know about lists.

In []: 'Hermione Granger' in people
Out[]: True
In []: 'Hagrid' in people
Out[]: False
In []: 'Luna' in people
Out[]: False

3List Patterns

people = ['Hermione Granger', 'Harry Potter',
'Ron Weasley', 'Luna Lovegood']

I[]:'e' in 'Hermione Granger'
O[]: True

I[]:'x' in 'Hermione Granger'
O[]: False

I[]:'Hermione' in \
'Hermione Granger'

O[]: True

I[]:'oneG' in 'Hermione Granger'
O[]: False

I[]:'one G' in \
'Hermione Granger'

O[]: True

Lists: x in s
determines if x is an element of list s.

Review: membership operations
in sequences Strings: x in s

determines if x is a substring in s,
not just if x is a character in s.

in simplifies isVowel and

isValidGesture :

def isVowel(char):
return char.lower() in 'aeiou'

def isValidGesture(gesture):
return gesture in

['rock', 'paper', 'scissors']

4List Patterns

Review: membership operations
in sequences

def sumList(nums):
sumSoFar = 0
for n in nums:

sumSoFar += n
return sumSoFar update accumulator

5

initialize accumulator

return accumulator
List Patterns

step n sumSoFar
0 0
1 8 8
2 3 11
3 10 21
4 4 25
5 5 30

In []: sumList([8,3,10,4,5])
Out[]: 30

Iteration table

Review: accumulation of values
Concepts in this slide:
The steps of the
accumulation pattern.

Accumulation with a List Result

Lists can be accumulated using the method .append which adds a
new element to the end of the list. The method .append
mutates the original list by changing its content.

Concepts in this slide:
How to accumulate a
list result

In []: a = [1, 2, 3]
In []: a.append(4)# mutate the list assigned to a by appending 4
In []: a
Out[]: [1, 2, 3, 4]

We can also accumulate lists using concatenation. Note that
concatenation returns a new list instead of mutating the original list.
In []: a = [1, 2, 3]
In []: a = a + [4] # create a new list through concatenation and reassign
a to the new list
In []: a
Out[]: [1, 2, 3, 4]

6List Patterns

Accumulation with a list

7List Patterns

def printHalves(n):
'''Prints positive successive

halves of n'''
while (n > 0):

print(n)
n = n//2

In []: printHalves(22)

Out[]:
22
11
5
2
1

Recall printHalves from before: step n

0 22

1 11

2 5

3 2

4 1

5 0

Iteration table

Concepts in this slide:
Modify accumulation
pattern to work with lists.

Accumulation with a list

In []: halves(22)
Out[]: [22, 11, 5, 2, 1]

8List Patterns

def printHalves(n):
'''Prints positive successive

halves of n'''
while (n > 0):

print(n)
n = n//2

In []: printHalves(22)

Out[]:
22
11
5
2
1

Recall printHalves from before:

append plays a key role:

values of n are
collected into
result

step n

0 22

1 11

2 5

3 2

4 1

5 0

Iteration table

def halves(n):
result = []
while (n > 0):

result.append(n)
n = n//2

return result

Concepts in this slide:
Modify accumulation
pattern to work with lists.

1. Start with an empty list []

def partialSums(nums):
sumSoFar = 0
partials = []
for n in nums:

Double accumulation: partialSums
Use loops to build the list:

9List Patterns

initialize
accumulators

1. Start with an empty list []
2. Use a loop to append elements to this list one at a time

def partialSums(nums):
sumSoFar = 0
partials = []
for n in nums:

sumSoFar += n
partials.append(sumSoFar)

return partials

Double accumulation: partialSums
Use loops to build the list:

10List Patterns

update
accumulators

1. Start with an empty list []
2. Use a loop to append elements to this list one at a time
3. Modify the sumList function to return a list of the partial sums
calculated along the way

def partialSums(nums):
sumSoFar = 0
partials = []
for n in nums:

sumSoFar += n
partials.append(sumSoFar)

return partials

Double accumulation: partialSums
Use loops to build the list:

11List Patterns

return
accumulator

def partialSums(nums):
sumSoFar = 0
partials = []
for n in nums:

sumSoFar += n
partials.append(sumSoFar)

return partials

In []: partialSums([8,3,10,4,5])
Out[]: [8,11,21,25,30]

12List Patterns

step n sumSo
Far

partials

0 0 []

1 8 8 [8]

2 3 11 [8,11]

3 10 21 [8,11,21]

4 4 25 [8,11,21,25]

5 5 30 [8,11,21,25,
30]

Double accumulation: partialSums
Use loops to build the list:

Exercise 1: prefixes

def prefixes(phrase):
'''Given a string, returns a list of nonempty prefixes of
the string, ordered from shortest to longest
'''

13

In []: prefixes('Paula')
Out[]:['P','Pa','Pau','Paul','Paula']

List Patterns

step char prefixSoFar prefix

0 '' []

1 'P' 'P' ['P']

2 'a' 'Pa' ['P','Pa']

3 'u' 'Pau' ['P','Pa','Pau']

4 'l' 'Paul' ['P','Pa','Pau','Paul']

5 'a' 'Paula' ['P','Pa','Pau','Paul','Paula']

Will do this in the notebook in class.

List patterns: map & filter

1. MAPPING: return a new list that results from performing an
operation on each element of a given list.
E.g. Return a list of the first names in people

['Hermione', 'Harry', 'Ron', 'Luna']

2. FILTERING: return a new list that results from keeping
those elements of a given list that satisfy some condition
E.g. Return a list of names with last names ending in ‘er’ in people
['Granger', 'Potter']

14List Patterns

people = ['Hermione Granger', 'Harry Potter',
'Ron Weasley', 'Luna Lovegood']

Concepts in this slide:
Definitions for mapping
and filtering patterns.

We can produce a new list simply by performing an operation on
every element in a given list. This is called the mapping pattern.

Mapping pattern: an example

def mapDouble(nums):
'''Takes a list of numbers and returns a new list in
which each element is twice the corresponding
element in the input list
'''
result = []
for n in nums:

result.append(2*n)
return result

mapDouble([8,3,10,5,4]) returns [16,6,20,10,8]
mapDouble([17,42,6]) returns [34,84,12]
mapDouble([]) returns []

15List Patterns

Concepts in this slide:
Mapping has the same
steps as accumulation.

Exercise 2: mapLumos

16

def mapLumos(theList):
'''Given a list of strings, returns a new list in which
'Lumos' is added to the end of each string
'''

List Patterns

In []: mapLumos(people)
Out[]: ['Hermione GrangerLumos', 'Harry PotterLumos',

'Ron WeasleyLumos', 'Luna LovegoodLumos']

In []: mapLumos(['Eni', 'Vinitha', 'Sohie', 'Lyn'])
Out[]: ['EniLumos', 'VinithaLumos', 'SohieLumos', 'LynLumos']

In []: mapLumos([])
Out[]: []

Exercise 3: mapFirstWord

17

def mapFirstWord(strings):
'''Given a list of (possibly multiword) strings,
returns a new list in which each element is the first
word
'''

List Patterns

In []: mapFirstWord(people)
Out[]: ['Hermione', 'Harry', 'Ron', 'Luna']

In []: mapFirstWord(['feisty smelly dog', 'furry white bunny',
'orange clown fish')]

Out[]: ['feisty', 'furry', 'orange']

In []: mapFirstWord(['Eni', 'Vinitha', 'Sohie', 'Lyn'])
Out[]: ['Eni', 'Vinitha', 'Sohie', 'Lyn']

Another common way to produce a new list is to filter an existing
list, keeping only those elements that satisfy a certain predicate. This
is called the filtering pattern.

Filtering Pattern: an example

def filterEvens(nums):
'''Takes a list of numbers and returns a new list
of all numbers in the input list that are
divisible by 2
'''
result = []
for n in nums:

if n%2 == 0:
result.append(n)

return result

filterEvens([8,3,10,4,5]) returns [8,10,4]
filterEvens([8,2,10,4,6]) returns [8,2,10,4,6]
filterEvens([7,3,11,3,5]) returns []

18List Patterns

Concepts in this slide:
Filtering has also the same
steps as accumulation.

Exercise 4: Filtering strings by containment

19

def filterElementsContaining(val, aList):
'''Return a new list whose elements are all the
elements of aList that contain val
'''

In []: filterElementsContaining('Harry', people)
Out[]: ['Harry Potter']

In []: filterElementsContaining('er', people)
Out[]: ['Hermione Granger', 'Harry Potter']

In []: filterElementsContaining('Voldemort', people)
Out[]: []

In []: filterElementsContaining('smelly',['feisty smelly dog',
'furry white bunny', 'orange clown fish'])

Out[]: ['feisty smelly dog']
List Patterns

people = ['Hermione Granger', 'Harry Potter',
'Ron Weasley', 'Luna Lovegood']

20

Summary
1. Lists are mutable data types that can change through assignment or through

methods such append, pop, and insert.
2. The most used list method is append, because it is used to create new lists in

different patterns: accumulation, mapping, and filtering.

3. In a function that implements accumulation we have three steps: 1) initialize
accumulator (e. g., an empty list); 2) update of the accumulator (e.g., through
append); 3) return the created accumulator.

4. Mapping and filtering are special cases of accumulation. They always need a
sequence as a starting point (there is no such requirement for accumulation).

5. In mapping, the initial sequence and the mapped sequence will always have
the same length, since the purpose of mapping is to apply an operation to all
elements of the initial sequence.

6. In filtering, the initial sequence and the mapped sequence will have varying
lengths, since the purpose of filtering is to keep only the elements that fulfill
some criteria.

List Patterns

Test your knowledge

21

1. Suppose we have lst = [1] and perform lst = lst.append(2).
Try to guess the outcome and then print it in the console. Was it what you
expected? How can you explain it?

2. We can add two lists, for example: lst = [1]; lst + [2]. How does
this operation differ from the lst.append(2) above, since they both
result in the list [1, 2].

3. Review the method insert from the previous lecture on lists and memory
diagrams. What are its similarities and differences with append?

4. Write a function that given a single integer number return a lists of tuples like
below: makeSquarePairs(5) returns [(1, 1), (2, 4), (3,
9), (4, 16), (5, 25)].

List Patterns

