
CS111 Computer Programming

Department of Computer Science
Wellesley College

Iteration – Part 2

Review: Iteration [Part 1]
o Iteration is the repeated execution of a set of statements until a

stopping condition is reached.
o while loops are an iteration construct used when it is not known in

advance how long execution should continue. for loops (an
abstraction of while loops) are used when we have a fixed set of
items in a sequence to iterate over.

o If the stopping condition is never reached, the loop will run forever.
It is known in this case as an infinite loop.

o The stopping condition might involve one or more state variables,
and we need to make sure that the body of the loop contains
statements that continuously update these state variables.

o We can use the model of iteration tables to understand the inner
workings of a loop. Its columns represent the state variables and the
rows represent their values in every iteration.

Iteration 2 2

Review: Syntax of loops

Iteration 2 3

while continuation_condition :
statement1

statementN

…

a boolean expression
denoting whether to iterate
through the body of the
loop one more time.

for var in sequence:
statement1

statementN

…

A sequence of items: characters
in a string, items in a list, ranges,
etc.A variable that takes its values

from the items of the sequence.

Concepts in this slide:
Comparing the syntax of
both loop constructs.

Flow charts for two
loop constructs

Iteration 2 4

statement1

continuation
_condition

True False

… while
loop
body

statementN

statement1

Still elements
in sequence

True False

… for
loop
body

statementN

while

for

Review: sumBetween
with while loop
In[6]: sumBetween(4,8)
Out[6]: 30 # 4 + 5 + 6 + 7 + 8

5

step lo hi sumSoFar
0 4 8 0
1 5 8 4
2 6 8 9
3 7 8 15
4 8 8 22
5 9 8 30

sumBetween(4,8) returns 30
sumBetween(4,4) returns 4
sumBetween(4,3) returns 0

def sumBetween(lo, hi):
'''Returns the sum of the integers from lo to hi
(inclusive). Assume lo and hi are integers.'''
sumSoFar = 0
while lo <= hi:

sumSoFar += lo
lo += 1

return sumSoFar

Concepts in this slide:
Using the iteration table to
reason about a problem.

initialize accumulator

update accumulator

return accumulator

To notice:
• Row 0 in the table shows the

initial values of all state
variables.

• Row 1 shows values after the
updates in the loop body.

Iteration 2

Today’s topics

6

o Nested for loops
o Swapping two variable values
o Simultaneous assignment in Python

Iteration 2

Nested loops for printing

7

print the multiplication table from 2 to 5
2 x 2 = 4
2 x 3 = 6
2 x 4 = 8
2 x 5 = 10
3 x 2 = 6
3 x 3 = 9
3 x 4 = 12
...

To notice:
o Variable i in the outer loop is set initially to value 2.

• Variable j in the inner loop is set initially to value 2.
• Variable j keeps changing its value: 3, 4, 5;

meanwhile i doesn’t change.
o When the inner loop is done, i becomes 3.

• Now the inner loop starts again, and j takes on the values
2, 3, 4 ,5

o Every time j reaches 5, the inner loop ends and i increments.
o The outer loop ends when both i and j are 5.

for i in range(2, 6):
for j in range(2, 6):

print(i, 'x', j, '=', i*j) Inner loop Outer loop

A for loop body can contain a for loop.

Iteration 2

Concepts in this slide:
Two nested loops: the
outer and inner loop.

Nested Loop Exercises

8

for i in range(2, 6):
for j in range(2, 6):
if i <= j:
print(i, 'x', j, '=', i*j)

Conditionals can appear anywhere in loops.

Predict the printed output of the following loops.
(Answers are in the notebook solutions.)

Iteration 2

for i in range(2, 6):
if i % 2 == 0:
for j in range(2, 6):
if i <= j:
print(i, 'x', j, '=', i*j)

See notebook solutions for answers

for letter in ['b','d','r','s']:
for suffix in ['ad', 'ib', 'ump']:

print(letter + suffix)

9

Exercise: print words

What is printed below? (Answers are in the notebook solutions).

Iteration 2

Nested loops for
accumulation

Iteration 2 10

def isVowel(char):
return len(char) == 1 and char.lower() in 'aeiou'

verse = "Two roads diverged in a yellow wood"
for word in verse.split():

counter = 0
for letter in word:

if isVowel(letter):
counter += 1

print('Vowels in "'+ word + '" =>', counter)

Vowels in "Two" => 1
Vowels in "roads" => 2
Vowels in "diverged" => 3
Vowels in "in" => 1
Vowels in "a" => 1
Vowels in "yellow" => 2
Vowels in "wood" => 2

Concepts in this slide:
Using nested loops for
successive accumulations.

To notice:
• The accumulator variable counter is set

to 0 every time the inner loop starts.
• Outer loop iterates over a list of words.
• Inner loop iterates over characters in a

string.

4-11

Flow Chart for
nested for loops

A flow chart diagram
to explain the code
execution for the
example in slide 9.

Iteration 2 11

Our old friend countVowels from Lec 08 encapsulates
the inner loop of the nested loop example with vowels
def countVowels(word):

counter = 0
for letter in word:

if isVowel(letter):
counter += 1

return counter

We can now use countVowels to avoid an explicit nested loop
(though at runtime the for loop within countVowels still
executes within the for loop within countVowelsInVerse
def countVowelsInVerse(verse):

for word in verse.split():
print('Vowels in "' + word + '" =>', countVowels(word))

countVowelsInVerse("Two roads diverged in a yellow wood")
12

Avoiding Nested Loops with Functions
Encapsulating the inner loop into a separate function eliminates
the loop nesting and can make programs easier to read.

Iteration 2

Exercise: Nested Loops with graphics
Here's a picture involving a grid of randomly colored circles with
radius = 50.

This picture is created using two nested for loops. How would you
do that? You can find the answers in the notebook!

13

(-200, 200)

(-100, 100)

(0, 0)

Iteration 2

Exercise: Triangles of Circles

14Iteration 2

colors = ["LightSkyBlue", "LightPink",
"LightSeaGreen", "PaleVioletRed"]

reset()
noTrace()

for x in coords:
for y in coords:

if y <= x:
teleport(x, y)
color(random.choice(colors))
begin_fill()
drawCircle(radius)
end_fill()

showPicture()

Which of the 4 triangular
patterns of circles is created
by the following function?

How can you change the
function to make the other
3 patterns?

Swapping Values in Python

15

Imagine you have a list of numbers that you want to sort by swapping two
adjacent (neighbor) items every time one is smaller than the other. This is a
famous algorithm known as the “bubble sort”, and is usually implemented via
nested for loops. If you’re curious, read this page. You’ll learn how to implement
bubble sort in CS 230.

Start of list
nums = [3, 2, 1, 4]
After 1st swap
nums = [2, 3, 1, 4]
After 2nd swap
nums = [2, 1, 3, 4]
After 3rd swap
nums = [1, 2, 3, 4]

If we want to do the first swap of 3 and 2,
can we write the following?

nums[0] = nums[1]
nums[1] = nums[0]

Try it out to see what happens. The
solution in this case would look like this:

tempVal = nums[0]
nums[0] = nums[1]
nums[1] = tempVal

Concepts in this slide:
To swap the values of two
variables, a third variable
is needed.

Iteration 2

http://interactivepython.org/runestone/static/pythonds/SortSearch/TheBubbleSort.html

Simultaneous assignment
in Python*

16

In Python, we can assign values to many variables at once, here are some
examples, that you should try in the console:

a, b = 0, 1
a, b, c = 1, 2, 3
a, b = "AB"
a, b = [10, 20]
a, b = (15, 25)
a, b, c, d = [1, 2, 3, 4]

The reason that these assignments work is
that there is an equal number of variables
and values on each side. Even the string
“AB” is a sequence of two characters.

Try a different number of variables or values
on both sides to see what errors you get.

Swapping through simultaneous
assignment

a, b = b, a
num[0], num[1] = num[1], num[0]

Do these statements
work?

Concepts in this slide:
It is possible to assign
values to multiple
variables in one
statement.

Iteration 2*This is also known as tuple assignment.

Variable update order matters

def sumHalvesBroken(n):
sumSoFar = 0
while n > 0:

n = n//2 # updates n too early!
sumSoFar += n

return sumSoFar

In [3]: sumHalvesBroken(22)
Out[3]: 19

step n sumSoFar

0 22 0

1 11 11

2 5 16

3 2 18

4 1 19

5 0 19

17

Important:
If update rules involve rules
where state variables are
dependent on one another, be
very careful with the order of
updates.

Iteration 2

Simultaneous update example:
Greatest Common Divisor algorithm
o The greatest common divisor (gcd) of

integers a and b is the largest integer that
divides both a and b
o Eg: gcd(84, 60) is 12

o Euclid (300 BC) wrote this algorithm to compute the GCD:
o Given a and b, repeat the following steps until b is 0.

o Let the new value of b be the remainder of dividing a by b
o Let the new value of a be the old value of b

o … this is a perfect opportunity
for a while loop. step a b

0 84 60
1 60 24
2 24 12
3 12 0

18Iteration 2

Simultaneous update (e.g., gcd)
step a b
0 84 60
1 60 24
2 24 12

3 12 0

step a b
0 33 24
1 24 9
2 9 6
3 6 3
4 3 0

step a b
0 33 7
1 7 5
2 5 2
3 2 1
4 1 0

Assume a >= b > 0
def gcdBroken1(a, b):

while b != 0:
a = b
b = a % b

return a

Assume a >= b > 0
def gcdBroken2(a, b):

while b != 0:
b = a % b
a = b

return a

Neither of the following two gcd functions works. Why?

19Iteration 2

Fixing simultaneous update
Assume a >= b > 0
def gcdFixed1(a, b):

while b != 0:
prevA = a
prevB = b
a = prevB
b = prevA % prevB

return a

Assume a >= b > 0
def gcdFixed2(a, b):

while b != 0:
prevA = a
prevB = b
b = prevA % prevB
a = prevB

return a

20

Python’s simultaneous assignment is an even more elegant solution!
Assume a >= b > 0
def gcdFixed3(a, b):

while b != 0:
a, b = b, a % b # simultaneous assignment of a

pair of values to a pair
of variables (parens optional)

return a

To notice:
- Functions 1&2 use temporary variables to store

values before updates.
- Function 3 assigns multiple values in one step.

Iteration 2

Test your knowledge

21

1. The sumBetween solution in slide 5 has an iteration table with three
state variables. How will the iteration table look like if the solution is
written with a for loop?

2. If we want to print out the entire multiplication table for 1 to 10, how
many times will the print statement in slide 7 be executed?

3. What would be the final value of counter in slide 9, if we move the
assignment statement before the outer for loop?

4. What results will be printed in slide 9 if the counter assignment statements
moves within the inner loop?

5. For the exercise in slide 12, try to draw a flow chart diagram like the one in
slide 10, before writing code to solve the problem.

6. What is an alternative way of writing the function in slide 17, which leads
to the same gotcha?

7. If you type 0, 1, 2 in the Python console, what kind of type will Python
assign to this sequence of numbers? How does that help for simultaneous
assignments?

Iteration 2

