
CS111 Computer Programming

Department of Computer Science
Wellesley College

Fruitful Recursion
Turtle Recursion

Recall: fruitful functions and side effects

max, min
len, int

print,
help,

2Fruitful/Turtle Recursion

Functions can have side effects such as
printing (remember this is not the same
as returning). Regardless of whether a
function has a side effect, it will always
return a value. None will be provided as
a default. Generally, the function caller
will not use the returned None. Thus,
we write this situation without an out as
shown in second picture. The last
picture depicts a scenario in which a
function has a side effect AND returns a
value other than None.

Functions can return a value using the
keyword return. That value is returned
to whoever called the function.

None is
returned here

Sum of numbers from 1 to n
o Recall countUp(n) for printing integers from 1 up to n:

def countUp(n):
if n <= 0:

pass
else:

countUp(n-1)
print(n)

o How would we define a function sumUp(n) that returns the sum
of integers from 1 through n?

3

Thinking Box
In a normal function, we would use an
accumulator variable that starts at 0
to keep track of the amount being
accumulated (e.g., a sum). Would it
make sense to have such a variable in
a recursive function? Explain. Use the
call frame model to verify your answer.

Fruitful/Turtle Recursion

How to write recursive functions?
Wishful thinking! (for the recursive case)
1. Consider a relatively small concrete example of the function, typically of

size n = 3 or n = 4. What should it return?

In this case, sumUp(4) should return 4 + 3 + 2 + 1 = 10

2. Without even thinking, apply the function to a smaller version of the
problem. By wishful thinking, assume this “just works”.

In this case, sumUp(3) should return 3 + 2 + 1 = 6.

3. What glue can be used to combine the arguments of the big problem and the
result of the smaller problem to yield the result for the big problem?.

In this case, sumUp(4) should return 4 + sumUp(3)

4. Generalize the concrete example into the general case:

In this case, sumUp(n) should return n + sumUp(n-1)

4Fruitful/Turtle Recursion

What about the base case?
Use the recursive case for the penultimate input

For example, what should sumUp(0) return?

1. According to the recursive case:

sumUp(n) should return n + sumUp(n-1)

2. Specialize the recursive case to the penultimate (next to last) input:

sumUp(1) should return 1 + sumUp(0)

3. Decide what should be returned for the penultimate input.
In this case, sumUp(1) should clearly return 1.

4. Deduce what should be returned for the base case.

sumUp(1) equals 1 equals 1 + sumUp(0),
so sumUp(0) should return 0

Here, 0 is the identity value for +. Fruitful base cases are often identity values.

5Fruitful/Turtle Recursion

Defining sumUp

def countUp(n):
if n <= 0:

pass
else:

countUp(n-1)
print(n)

def sumUp(n):
if n <= 0:

return 0
else:

return n + sumUp(n-1)

Compare this to countUp(n):

6

Thinking Box
The solution didn’t use an accumulator
variable that started at 0 to store the
sum. Does that mean that we cannot
use local variables in a recursive
function? Do you think the following
function will work? Explain.

def sumUp(n):
if n <= 0:

return 0
else:

sumSoFar = n + sumUp(n-1)
return sumSoFar

Fruitful/Turtle Recursion

Call frame model for sumUp(3)

def sumUp(n):
"""returns sum of integers
from 1 up to n"""
if n <= 0:

return 0
else:

return n + sumUp(n-1)

sumUp(3)

7Fruitful/Turtle Recursion

See full slide deck
for intermediate

steps between slides
7 and 8.

Call frame model for
sumUp(3)

if False:
return 0

else:
return 3 + sumUp(2)

sumUp(3)

def sumUp(n):
"""returns sum of integers
from 1 up to n"""
if n <= 0:

return 0
else:

return n + sumUp(n-1)

n 3

if False:
return 0

else:
return 2 + sumUp(1)

sumUp(2)

n 2

if n <= 0:
return 0

else:
return n + sumUp(n-1)

sumUp(1)

n 1

sumUp(3)

8Fruitful/Turtle Recursion

Call frame model for
sumUp(3)

def sumUp(n):
"""returns sum of integers
from 1 up to n"""
if n <= 0:

return 0
else:

return n + sumUp(n-1)

6

9Fruitful/Turtle Recursion

See full slide deck
for intermediate

steps between slides
8 and 9.

Another view: sumUp(4)
sumUp(4): 10

sumUp(3): 6

sumUp(2): 3

sumUp(1): 1

sumUp(0): 0

pending addition
is nontrivial glue step

def sumUp(n):
"""returns sum of integers
from 1 up to n"""
if n <= 0:

return 0
else:

return n + sumUp(n-1)

glue

+

+

+

+

-1

divide

-1

-1

-1

conquer
10Fruitful/Turtle Recursion

Yet Another view: sumUp(4)
def sumUp(n):

"""returns sum of integers
from 1 up to n"""
if n <= 0:

return 0
else:

return n + sumUp(n-1)

sumUp(4)
Þ 4 + sumUp(3)
Þ 4 + (3 + sumUp(2))
Þ 4 + (3 + sumUp(2))
Þ 4 + (3 + (2 + sumUp(1)))
Þ 4 + (3 + (2 + (1 + sumUp(0))))
Þ 4 + (3 + (2 + (1 + 0)))
Þ 4 + (3 + (2 + 1))
Þ 4 + (3 + 3)
Þ 4 + 6
Þ 10

11Fruitful/Turtle Recursion

In Fruitful Recursion, Base Case(s) are Required

def countUp(n):
if n <= 0:

pass
else:

countUp(n-1)
print(n)

def sumUp(n):
if n <= 0:

return 0
else:

return n + sumUp(n-1)

countUp and sumUp have similar structure:

For nonfruitful recursive functions like
countUp, it’s possible to eliminate the pass base
case by rewriting the conditional,

def countUp(n):
if n > 0:

countUp(n-1)
print(n) because else: pass does nothing.

But for fruitful recursive functions
like sumUp, no conditional branch
can be eliminated, because a return value
must be specified for the base case.
Often it’s an identity value for the glue.

def sumUp(n):
if n > 0:

return n + sumUp(n-1)
else:

return 0

12Fruitful/Turtle Recursion

How many ways can you arrange 3 items in a
sequence?

Factorial

How about 4 items?

13

Factorial
3 items were arranged in 6
different ways. Or 3x2x1. What
is the general formula for
calculating the arrangements of
n items (or n!)?

Fruitful/Turtle Recursion

Review: Spiraling Turtles

spiral(200,90,0.9,10) spiral(200,72,0.97,10) spiral(200,80,0.95,10)

spiral(200,95,0.93,10)spiral(200,121,0.95,15)

14

Answer this:
How would you create these
shapes using loops?
Recursion makes easier solving
certain problems that involve a
repeating pattern.

Fruitful/Turtle Recursion

def spiral(sideLen, angle,
scaleFactor, minLength):

"""Draw a spiral recursively."""

if sideLen >= minLength:
fd(sideLen)
lt(angle)
spiral(sideLen*scaleFactor,

angle,
scaleFactor,
minLength)

• sideLen is the length of
the current side

• angle is the amount the
turtle turns left to draw the
next side

• scaleFactor is the
multiplicative factor
(between 0.0 and 1.0) by
which to scale the next side

• minLength is the
smallest side length that the
turtle will draw

spiral(625, 90, 0.8, 250)

625

500

400

320

256

Review: Spiraling Turtles

15Fruitful/Turtle Recursion

New: How to do Fruitful Spiraling?
Recall the definition for having a turtle draw a spiral and return
to its original position and orientation:

def spiralBack(sideLen, angle, scaleFactor, minLength):
"""Draws a spiral based on the given parameters and

brings the turtle back to its initial location and
orientation."""

if sideLen < minLength:
pass

else:
fd(sideLen); lt(angle) # Put 2 stmts on 1 line with ;
spiralBack(sideLen*scaleFactor, angle,

scaleFactor, minLength)
rt(angle); bk(sideLen)

How can we modify this function to return
(1) the total length of lines in the spiral;
(2) the number of lines in the spiral;
(3) both of the above numbers in a pair?

16Fruitful/Turtle Recursion

spiralLength(100, 90, 0.5, 5) è 193.75

spiralLength(120, 60, 0.5, 5) è 578.8893767467009

spiralLength(512, 90, 0.5, 5) è 1016

spiralLength

def spiralLength(sideLen, angle, scaleFactor, minLength)
"""Draws a spiral and returns the total length

of the lines drawn."""
if sideLen < minLength:

return 0
else:

fd(sideLen); lt(angle)
subLen = spiralLength(sideLen*scaleFactor, angle,

scaleFactor, minLength)
rt(angle); bk(sideLen)
return sideLen + subLen

17Fruitful/Turtle Recursion

spiralCount(100, 90, 0.5, 5) è 5

spiralTuple(120, 60, 0.5, 5) è 15

spiralTuple(512, 90, 0.5, 5) è 7

Exercise: spiralCount

def spiralCount(sideLen, angle, scaleFactor, minLength)
"""Draws a spiral and returns the total number

of lines drawn. """
if sideLen < minLength:

return ?? # What goes here?
else:

fd(sideLen); lt(angle)
subCount = spiralCount(sideLen*scaleFactor, angle,

scaleFactor, minLength)
rt(angle); bk(sideLen)
return ?? # What goes here?

18More Fruitful Recursion

spiralTuple(100, 90, 0.5, 5) è (193.75, 5)

spiralTuple(120, 60, 0.5, 5) è (578.8893767467009, 15)

spiralTuple(512, 90, 0.5, 5) è (1016, 7)

Exercise: spiralTuple

def spiralTuple(sideLen, angle, scaleFactor, minLength)
"""Draws a spiral and returns a pair of (1) the total length

of the lines drawn and (2) the number of lines."""
if sideLen < minLength:

return ?? # What goes here?
else:

fd(sideLen); lt(angle)
?? = spiralTuple(sideLen*scaleFactor, angle,

scaleFactor, minLength)
rt(angle); bk(sideLen)
return ?? # What goes here?

19More Fruitful Recursion

Fruitful Trees

20

def branchCount(levels, trunkLen, angle, shrinkFactor):
"""Draw a 2-branch tree recursively and returns a
count of the branches.
levels: number of branches on any path

from the root to a leaf
trunkLen: length of the base trunk of the tree
angle: angle from the trunk for each subtree
shrinkFactor: shrinking factor for each subtree
"""
your code here

As with spirals, we can return counts of the drawings we make
using fruitful recursion. Try this example below in the notebook
and check the notebook solution for answers.

More Fruitful Recursion

List of numbers from n down to 1

Define a function countDownList to return the list of numbers
from n down to 1

countDownList(0) à []
countDownList(5) à [5, 4, 3, 2, 1]
countDownList(8) à [8, 7, 6, 5, 4, 3, 2, 1]

Apply the wishful thinking strategy on n = 4:
• countDownList(4) should return [4, 3, 2, 1]
• By wishful thinking, assume countDownList(3) returns [3, 2, 1]
• How to combine 4 and [3, 2, 1] to yield [4, 3, 2, 1]?

[4] + [3, 2, 1]
• Generalize: countDownList(n) = [n] + countDownList(n-1)

21More Fruitful Recursion

countDownList(n)

def countDownList(n):
"""Returns a list of numbers from n down to 1.

For example, countDownList(5) returns
[5,4,3,2,1].

"""
if n <= 0:

return []
else:

return [n] + countDownList(n-1)

22More Fruitful Recursion

To remember
When the glue operation in a
recursive function involves
lists, the identity value is the
empty list.

Define countDownListPrintResults(n)

def countDownListPrintResults(n):
"""Returns a list of numbers from n down to 1

and also prints each recursive result along
the way."""

if n <= 0:
add a print statement here
result = []

else:
result = [n] + countDownListPrintResults(n-1)
add a print statement here
return result

23More Fruitful Recursion

Exercise: Define countUpList(n)

def countUpList(n):
"""Returns a list of numbers from 1 up to n.

For example, countUpList(5) returns
[1,2,3,4,5]."""

if n <= 0:
return ?? # What goes here?

else:
return ?? # What goes here?

24More Fruitful Recursion

Extra: Fibonacci numbers

More Fruitful Recursion 25

11-26

Leonardo Pisano Fibonacci counts Rabbits

Month # Pairs

0 0

1 1

2 1

3 2

4 3

5 5

6 8

Assume:
• Start with one pair of newborn rabbits in month 1.
• Newborn rabbits become sexually mature after 1
month.
• Sexually mature pairs produce 1 new pair at the
end of every month .
• Rabbits never die.

26More Fruitful Recursion

Exercise: Fibonacci Numbers fib(n)

def fibRec(n):
'''Returns the nth Fibonacci number.'''
if n <= 1:

return n
else:

return fibRec(n-1) + fibRec(n-2)

The nth Fibonacci number fib(n) is the number of
pairs of rabbits alive in the nth month.

Formula:
fib(0) = 0 ; no pairs initially
fib(1) = 1 ; 1 pair introduced the first month
fib(n) = fib(n-1) ; pairs never die, so live to next month

+ fib(n-2) ; all sexually mature pairs produce
; a pair each month

Now write the program:

27More Fruitful Recursion

fibRec(0)

Fibonacci: Efficiency

How long would it take to calculate fibRec(100)?

fibRec(4)

: 1 : 0fibRec(1)

: 1 : 0fibRec(1) fibRec(0)

: 1fibRec(2) fibRec(1)

fibRec(3) fibRec(2)

: 1
+

: 2
+

: 1
+

: 3
+

Is there a better way to calculate Fibonacci numbers?

28More Fruitful Recursion

Iteration leads to a more efficient fib(n)
The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, …

Iteration table for calculating the 8th Fibonacci number:

i fibi fibi_next

0 0 1

1 1 1

2 1 2

3 2 3

4 3 5

5 5 8

6 8 13

7 13 21

8 21 34

29More Fruitful Recursion

Exercise: fibLoop(n)
Use iteration to calculate Fibonacci
numbers more efficiently:

i fibi fibi_next

0 0 1

1 1 1

2 1 2

3 2 3

4 3 5

5 5 8

6 8 13

7 13 21

8 21 34

def fibLoop(n):
'''Returns the nth Fibonacci number.'''
fibi = 0
fibi_next = 1
for i in range(1, n+1):

flesh out this loop body

return ?? # What goes here?
30More Fruitful Recursion

