
CS111 Computer Programming

Department of Computer Science
Wellesley College

Files and File Operations

Computers as a Model for the Human Brain

Files 2https://en.wikipedia.org/wiki/Information_processing_theory

https://en.wikipedia.org/wiki/Information_processing_theory

The Analogy: Human Brain & Computer

Files 3https://medium.com/designerd/creative-vs-critical-thinking-2d10d28b0f6c

https://medium.com/designerd/creative-vs-critical-thinking-2d10d28b0f6c

Computer Memory and Storage Model

Files 4https://www.redhat.com/sysadmin/memory-and-storage

https://www.redhat.com/sysadmin/memory-and-storage

Variables vs Files

Files 5

Files “reside” in the hard drive (or some external storage). They record
data in a persistent way, data that will exist beyond the execution of a
particular computer program. Files have a name and an extension.

A computer has two kinds of storage:
volatile memory (i.e., the RAM) and
persistent memory (i.e, the hard disk).
The RAM memory is faster, but more
expensive, so current computers have 8-
16 GB of it, while a hard disk is slower,
but cheaper, so current computers have
up to 1-2 TB.

Concepts in this slide:
Persistent vs. volatile
memory. The bit as the
unit of information.

Variables “reside” in the memory, they exist only for the duration of
the program execution. Variables refer to memory locations where
values are stored.

Variables vs Files

Files 6

The amount of information stored in a file is measured in bytes,
kilobytes, megabytes, etc. Various symbols that represent content are
internally expressed in bits using standards such as ASCII, Unicode, etc.

Measuring information
The unit of information is the bit. Since one character can
be represented in 8 bits (or one byte), byte has become
the unit for measuring information stored in a file.
1 B (byte) = 8 bits
1 KB = 1,000 B
1 MB = 1,000,000 B
1 GB = 1,000,000,000 B
1 TB = 1,000,000,000,000 B

Concepts in this slide:
Persistent vs. volatile
memory. The bit as the
unit of information.

Reminder: ASCII Table

There are lots of file extensions

Files 8
https://www.howtogeek.com/356448/what-is-a-file-extension/

https://www.howtogeek.com/356448/what-is-a-file-extension/

By convention, file extensions (e.g., .pdf) indicate the content of a
file. Computer programs use other means to detect file content. Here is
a list of files that we have used or will be using:

.txt – plain text file, readable with a text editor. Lines separated by '\n'.

.csv – comma separated values. Simple text, but can be read by
spreadsheet applications as well, e.g., Microsoft Excel or Google Sheets.

.json – JavaScript Object Notation (JSON): data structured in lists,
dictionaries, or a combination of thereof. Can be viewed as text, and
loaded directly into Python with the module json.

.py – A text file in which we store Python programs. When a program
like Thonny opens a .py file, it highlights text according to Python
syntax.
.ipynb – interactive python notebook. A JSON file that the Jupyter
notebook program interprets as a web page.

File Extensions

Files 9

Until now, our data have been stored in variables. However, the universal way of storing
data is in a file, which is persistent storage and can be used across applications.

In Python, open creates and returns a file object

In []: myFile = open('thesis.txt', 'r')
In []: print(myFile)
<_io.TextIOWrapper name = 'thesis.txt' mode='r'
encodings='UTF-8'>
In []: type(myFile)
Out[]: _io.TextIOWrapper

Working with files in Python

Files 10

_io.TextIOWrapper is a class that defines a file object that interprets
the files as a stream of text.

Concepts in this slide:
The built-in function open
to create file objects.

In []: myFile = open('thesis.txt', 'r')
In []: print(myFile)
<_io.TextIOWrapper name = 'thesis.txt' mode='r'
encodings='UTF-8'>
In []: type(myFile)
Out[]: _io.TextIOWrapper

Working with files in Python

Files 11

Concepts in this slide:
The built-in function open
to create file objects.

A file can be opened for reading ('r'), writing ('w'), or
appending ('a’).

We cannot write or append in a file opened for reading.

In []: myFile = open('thesis.txt', 'r')
In []: print(myFile)
<_io.TextIOWrapper name = 'thesis.txt' mode='r'
encodings='UTF-8'>
In []: type(myFile)
Out[]: _io.TextIOWrapper

Working with files in Python

Files 12

The most important methods for a file object are: read,
readlines, readline, and write, that we’ll cover today.

Concepts in this slide:
The built-in function open
to create file objects.

Context: Python Objects

Image credit: https://www.analyticsvidhya.com/blog/2021/05/oop-in-python-for-absolute-beginners/

_io.TextIOWrapper

name: “thesis.txt”

mode: ‘r’

encoding: ‘UTF-8’

read()

readline()

readlines()

<_io.TextIOWrapper
name = 'thesis.txt'
mode='r'
encodings='UTF-8'>

Attributes

Methods

In Python, every value is an
object, an instance of a particular
class. A class is a special
construct that defines a new
type. When we call the function
type with a value, it tells us the
name of its class. You will learn
about classes in CS 230.

Objects have attributes and
methods. We have been using
them throughout the semester.

A file object

Files 13

Context: Python Method Calls

Files 14

We’ve already seen many examples of calling methods on Python objects
in the context of strings and lists. For example:

Method calls are similar to function calls in the sense that both have comma-
separated arguments that appear in parens. However, in a method call, the object on
which the method is called (the receiver) appears before the method name,
separated from it by a dot.

Method Calls Output Values
'hello'.upper() 'HELLO’
'Hello'.lower() 'hello'
'bat or cat or dog'.split() ['bat','or','cat','or','dog']
'bat or cat or dog'.split(' or ') ['bat','cat','dog']
'; '.join(['bat','cat','dog']) 'bat; cat; dog'
L = [8,4,5]
L.append(7) None
L.insert(2,9) None
L.pop(0) 8

It’s easy to forget to close a file. This usually isn’t too bad when reading a file, but
can be disastrous when writing a file (the contents may not actually be written
until the file is closed!)

Python’s with … as notation for files implicitly closes a file, even if an error
occurs within the file operations.

f = open(filename, 'w')
… file operations involving f …
f.close()

with open(filename, 'w') as f:
… file operations involving f …
f implicitly closed
when with is done.

f = open(filename, 'r')
… file operations involving f …
f.close()

with open(filename, 'r') as f:
… file operations involving f …
f implicitly closed
when with is done.

'r' – read mode; 'w' – write mode

Files 15

Preferred file opening syntax:
with … as

Concepts in this slide:
How to open files with the
notation with … as

reads all lines at once as string
with open('cities.txt', 'r') as inputFile:

allText = inputFile.read()

In []: allText
Out[]: 'Wilmington\nPhiladelphia\nBoston\nCharlotte'

In []: allText.split()
Out[]: ['Wilmington', 'Philadelphia', 'Boston', 'Charlotte']

In []: moreText = inputFile.read()
ValueError: I/O operation on closed file

Wilmington
Philadelphia
Boston
Charlotte

cities.txt

Files 16

Reading all text with read

To notice:
The method read returns all the content of the file as a single
string. Notice how the returned string contains the newline
characters. These are chars that allow the two other methods
readline and readlines to know how to recognize lines.
In this case too, if we try to access inputFile outside the with
… as block, we’ll get an error about operations with a closed file.

reads all lines at once as list of strings
with open('cities.txt', 'r') as inputFile:

allLines = inputFile.readlines()

In []: allLines
Out[]: ['Wilmington\n', 'Philadelphia\n',

'Boston\n', 'Charlotte\n']

Files 17

Reading all lines with readlines

To notice:
The method readlines returns a list of all lines in a file.
Each line is a string terminated by the newline character
'\n'. These newline characters are visible in the Out[] cell,
but not if we print each line. They are also not visible in the
text file as well (see green box).
Important: Use readlines only when a file is not too large.
This is because it will read all content and store it in the RAM
memory (which, as you read in slide 2, is limited).

Wilmington
Philadelphia
Boston
Charlotte

cities.txt

reads one line at a time
with open('cities.txt', 'r') as inputFile:

line1 = inputFile.readline()
line2 = inputFile.readline()

In []: line1
Out[]: 'Wilmington\n'

In []: line2
Out[]: 'Philadelphia\n'

In []: line3 = inputFile.readline()
ValueError: I/O operation on closed file

Files 18

Reading one line with readline

To notice:
Interpret the first line as saying: open the file ‘cities.txt' for reading and
assign the variable inputFile to it, so that we can access its
content.
The indented statement is calling the method readline on the file
object inputFile to read only the first line and save it in the
variable oneline. Afterwards, the file is closed, which we can notice if
we try to use readline again on the inputFile.

Wilmington
Philadelphia
Boston
Charlotte

cities.txt

Files 19

Reading line-by-line with a
for loop

def linesFromFile(filename):
'''Returns a list of all lines in the given file. In
each line, the terminating newline has been removed.
'''
with open(filename, 'r') as inputFile: # open the file

strippedLines = []
for line in inputFile:

strippedLines.append(line.strip())
return strippedLines

To notice:
Within a for loop to read the content of a file, we don’t need to
call explicitly any of the three methods that we saw. A file object is
an iterator, it knows how to iterate over its elements, which are the
lines denoted by the newline character.
This is our preferred method for reading from a file.
The string method strip removes the newline character and all
white space around the line.

No explicit
method with the
file object. That
is, no read,
readlines, or
readline.

Concepts in this slide:
Within a for loop, there is
no need to explicitly call
the three read methods.

Writing Files
A file can be created (or opened) for writing by providing the argument ‘w’ to
open, signifying write mode.

When writing files, the syntax with … as is very important, because forgetting
to close a file has consequences.

with open('memories.txt', 'w') as memfileW:
memfileW.write('get coffee\n')
memfileW.write('do CS111 homework\n')
memfileW.write('vote in midterm elections!\n')

At this point, the file named
memories.txt is stored persistently in
the file system with the following
contents:

get coffee
do CS111 homework
vote in midterm elections!

Concepts in this slide:
Writing to a file that is
opened for writing.

Files 20

To notice:
• The second argument 'w' is what opens

the file in writing mode.
• The strings to write in the file contain the

newline character '\n' as their last
character to denote that a new line should
start in the file.

• The file memFileW is closed automatically.

Appending to files
How do we add lines to an existing file? We can’t open the file in write mode (with a
'w'), because that erases all previous contents and starts with an empty file. Instead,
we open the file in append mode (with an 'a'). Any subsequent writes are made
after the existing contents:

with open('memories.txt', 'a') as memfileA:
memfileA.write('win Nobel prize\n')
memfileA.write('eat big sundae\n')

Now the file memories.txt has the contents:

get coffee
do CS111 homework
vote in midterm elections!
win Nobel prize
eat big sundae

If a file does not already exist,
opening it in append mode creates
an empty file.

Files 21

Exception Handling
with try/except

An exception is an error detected during execution of a program.

When part of a program raises an exception (e.g., code for reading a file), it is
often better to catch and handle the exception rather than have the program
terminate abruptly with an error message (e.g., if a file doesn’t exist).

In Python, exceptions can be caught and handled with try/except statements.

try:
Lines of code that may raise an exception

except ErrorType:
Lines to execute when exception
with type ErrorType is raised

Misspelled filename:

IOError: No such file or directory: 'memory.txt'

memories = linesFromFile('memory.txt')

Files 22

Concepts in this slide:
New Python keywords:
try and except to catch
exceptions.

Exception Handling Examples

while True:
try:

i = int(raw_input('Please enter an integer: '))
print('Good, you entered’, i)
break # Python keyword to exit a loop

except ValueError:
print('Not a valid integer. Try again... ')

a = 0
try:

x = 8/a
print(x)

except ZeroDivisionError:
print('Do not divide by zero.')

try:
memories = linesFromFile('memory.txt')

except IOError:
memories = [] # Use empty list in this case

Files 23

To remember
We can use try/except
whenever we anticipate
errors coming from sources
that are related to human
input (humans often make
mistakes).

Challenge Problem: Reading / Writing Files

Files 24

Given input: CSV file with information from the Nobel Prize Committee

Desired output: CSV file with total number of prizes per country of citizenship

This is a real-world accumulation problem and
now you have the skills to solve such a problem
with Python.
Find all the details in the Jupyter notebook.

Test your knowledge
1. In your own words, what is the difference between a variable and a file?

2. We listed many file extensions in Slide 8. Do you recognize all of them? Have
you tried to open any of these files with applications different from the ones
which created them (or that you usually open them)? What have you seen?

3. When developing Python programs, why would we need to read files? Why
would we need to write files?

4. What would be some good uses for the file methods readline, readlines,
and read?

5. What do the three letters 'r', 'w', 'a' mean? Do you think one of them
can be omitted when opening a file?

6. What would happen if we try to write into a file open for reading?

7. How does the method readlines recognize lines, so that it can return a list of
all lines?

8. Challenge: suppose we have a text file open for reading, inputFile. Can you
write one line of code to print the total number of words in the file?

Files 25

