Files and File Operations

CS111 Computer Programming

2alEv] =

Department of Computer Science

Wellesley College

Computers as a Model for the Human Brain

Multi Store Model - Atkinson &
Shiffrin

Environmental Input

|

~ Sensory Input Maintenance
(sights, sounds, etc.)

Rehearsal
Retrieval

Sensory Atenton Short Term [o—— Long Term
Memory Memory Memory
Elaborate
Rehearsal
Leads to
J L Storage J L
F Forgotten Forgotten
Gigafien Through Through
Decay or Interference
Displacement or Retrieval
Failure

https://en.wikipedia.org/wiki/Information processing theoty

Files

2

https://en.wikipedia.org/wiki/Information_processing_theory

The Analogy: Human Brain & Computer

CPU

The Human Brain Registor A Computer

Working _ % | Temporary
Memory Storage
Areas
Physical RAM Yirtuad Memory
Storage Device Types
Long-Term e Permanent
MemOI'y Removadle Internet StOl'age
Drives Sterage Areas

Input Sources
Environment ey lnpqt
S Removable Jll Comera/ Remate Other DOVIces
s Mesia Mic/ Source Sources

Videoo

medium.com/desionerd/creative-vs-critical-thinking-2d10d28b0f6¢ Files

https://medium.com/designerd/creative-vs-critical-thinking-2d10d28b0f6c

Computer Memory and Storage Model

ALU

Cache
Memory

<

CPU

Main Memory

Bus

Primary Storage
Main Memory (RAM)

Off-Line Storage
External Hard drive
CD/DVD / USB Thumb Drive

e e e

v

Robotic Tape Systems, etc.

Archival Storage

|
1
I
|
!
i
|
|
|
I
|
|
1

https://www.redhat.com/sysadmin/memory-and-storage

Files

4

https://www.redhat.com/sysadmin/memory-and-storage

Concepts in this slide:
Persistent vs. volatile

Variables vs Files memory. The bit as the

unit of information.

Variables “reside” in the memory, they exist only for the duration of
the program execution. Variables refer to memory locations where
values are stored.

Files “reside” in the hard drive (or some external storage). They record
data in a persistent way, data that will exist beyond the execution of a
particular computer program. Files have a name and an extension.

A computer has two kinds of storage:
volatile memory (i.e., the RAM) and
persistent memory (i.e, the hard disk).
The RAM memory is faster, but more
expensive, so current computers have 8-
16 GB of it, while a hard disk is slower,
but cheaper, so current computers have
up to 1-2 TB.

Files

5

Concepts in this slide:

Val‘iables VS Files Persistent vs. volatile

memory. The bit as the
unit of information.

The amount of information stored in a file 1s measured in bytes,
kilobytes, megabytes, etc. Various symbols that represent content are
internally expressed in bits using standards such as ASCII, Unicode, etc.

Measuring information

The unit of information is the bit. Since one character can

be represented in 8 bits (or one byte), byte has become

the unit for measuring information stored in a file.

1 B (byte) = 8 bits

1 KB = 1,000 B

1 MB = 1,000,000 B

1 GB = 1,000,000,000 B

1 TB = 1,000,000,000,000 B Files

Decimal

© N O g b~ W N =~ O

W W NN NDNDNDNDNDNNN-=S 2 QO A aQ a a a a
- O © ® N O OO A WN =20 © 0N OO » WN = O

Reminder: ASCII Table

Binary

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111

Octal

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

Hex

00
01

02
03
04
05
06
07
08
09
0A
0B
oc
oD
OE
OF
10
1

12
13
14
15
16
17
18
19
1A
1B
1c
1D
1E
1F

ASCII

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
o)
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
suB
ESC
FS
GS
RS
us

Decimal

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Decimal - Binary - Octal - Hex — ASCI|

Binary

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111

Octal

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

Hex

20
21

22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31

32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

ASCII

© 00N OO WN = O =

Conversion Chart

Decimal Binary Octal Hex ASCII
64 01000000 100 40 @
65 01000001 101 41 A
66 01000010 102 42 B
67 01000011 103 43 C
68 01000100 104 44 D
69 01000101 105 45 E
70 01000110 106 46 F
71 01000111 107 47 G
72 01001000 110 48 H
73 01001001 111 49 |
74 01001010 112 4A J
75 01001011 113 4B K
76 01001100 114 4C L
77 01001101 115 4D M
78 01001110 116 4E N
79 01001111 117 4F O
80 01010000 120 50 P
81 01010001 121 51 Q
82 01010010 122 52 R
83 01010011 123 53 S
84 01010100 124 54 T
85 01010101 125 55 u
86 01010110 126 56 V
87 01010111 127 57 W
88 01011000 130 58 X
89 01011001 131 59 Y
90 01011010 132 5A Z
91 01011011 133 5B [
92 01011100 134 5C \
93 01011101 135 5D]
94 01011110 136 5E A
95 01011111 137 5F

Decima

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Binary

01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111

Octal

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

Hex

60
61

62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
7

72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

ASCII

oOQ ™ o0 o 0 T W

—_ o = =

-~ 0 T o S 3

-~ n

—~ — ~ N X X 5 < C

DEL

There are lots of file extensions

-/ /www.howtogeek.com /356448 /what-is-a-file-extension

https://www.howtogeek.com/356448/what-is-a-file-extension/

File Extensions

By convention, file extensions (e.g., .pdf) indicate the content of a
file. Computer programs use other means to detect file content. Here is
a list of files that we have used or will be using:

.txt — plain text file, readable with a text editor. Lines separated by "\n".

.csv — comma separated values. Simple text, but can be read by

spreadsheet applications as well, e.g., Microsoft Excel or Google Sheets.

.json — JavaScript Object Notation (JSON): data structured in lists,
dictionaries, or a combination of thereof. Can be viewed as text, and
loaded directly into Python with the module json.

.py — A text file in which we store Python programs. When a program
like Thonny opens a .py file, it highlights text according to Python

syntax.

ipynb — interactive python notebook. A JSON file that the Jupyter

notebook program interprets as a web page.
Files

9

Concepts in this slide:

W()rkin g With ﬁleS in Pyth on The built-in function open

to create file objects.

Until now, our data have been stored in variables. However, the universal way of storing
data 1s in a file, which is persistent storage and can be used across applications.

In Python, open creates and returns a file object

In []: myFile = open('thesis.txt', 'r')
In []: print(myFile)

< io.TextIOWrapper name = 'thesis.txt' mode='r'
encodings='UTF-8'>

In []: type(myFile)
Out[]: _io.TextIOWrapper

_1o.TextIOWrapper is a class that defines a file object that interprets
the files as a stream of text.

Files 10

Concepts in this slide:
The built-in function open

Working with files in Python ¢ . . e cojeots.

In []: myFile = open('thesis.txt', 'r')

In []: print(myFile)

< io.TextIOWrapper name = 'thesis.txt' mode='r'
encodings='UTF-8'>

In []: type(myFile)

Out[]: _io.TextIOWrapper

A file can be opened for reading (' r"), writing ('w'), or

appending ('a’).

We cannot write or append in a file opened for reading,

Files

11

Concepts in this slide:
The built-in function open

Working with files in Python ¢ . . e cojeots.

In []: myFile = open('thesis.txt', 'r')
In []: print(myFile)
< io.TextIOWrapper name = 'thesis.txt' mode='r'

encodings='UTF-8'>
In []: type(myFile)
Out[]: _io.TextIOWrapper

The most important methods for a file object are: read,
readlines, readline, and write, that we’ll cover today.

Files 12

Context: Python Objects

(:lilss -—? Pokemon

\ ‘ Name Pkachu _
‘9,-0\/ Type: Elactric 4 Allributes
l‘_;)"' L Health 70 '
! ’ attack()
Syl “
T\ dodge() +« Methods
evolve() o

Object

In Python, every value is an
object, an instance of a particular
class. A class is a special
construct that defines a new
type. When we call the function
type with a value, it tells us the
name of its class. You will learn
about classes in CS 230.

Objects have attributes and
methods. We have been using
them throughout the semester.

_io.TextIOWrapper

name: “thesis.txt”

A ftile object o
mode: r
<_io.TextIOWrapper encoding: ‘UTF-8’
name = 'thesis. txt'
mode="r' read()

encodings='UTF-8'>
readline ()

readlines ()

Image credit: https://www.analyticsvidhya.com/blog/2021/05/oop-in-python-for-absolute-beginners/

= Attributes

= Methods

Files

13

Context: Python Method Calls

We’ve already seen many examples of calling methods on Python objects
in the context of strings and lists. For example:

Method Calls Output Values

"hello' .upper() "HELLO’

'"Hello'.lower() "hello’

"bat or cat or dog'.split() ["bat','or','cat', 'or', 'dog"']
"bat or cat or dog'.split(' or ') ["bat', 'cat’', "dog"']

"5 '.join(['bat’', 'cat', 'dog’']) 'bat; cat; dog'

L = [8,4,5]

L.append(7) None

L.insert(2,9) None

L.pop(0) 8

Method calls are similar to function calls in the sense that both have comma-
separated arguments that appear in parens. However, in a method call, the object on
which the method is called (the receiver) appears before the method name,

separated from it by a dot.
Files 14

Concepts in this slide:

Preferred file opening syntax: How to open files with the
] notationwith .. as
with .. as

It’s easy to forget to close a file. This usually isn’t too bad when reading a file, but
can be disastrous when writing a file (the contents may not actually be written
until the file 1s closed!)

Python’s with .. as notation for files implicitly closes a file, even if an error
occurs within the file operations.

'r' — read mode; 'w' — write mode

with open (filename, 'r') as £:

£ = open (filenqme, . 'r') ... file operations involving £ ...
... file operations involving £ ... “ # £ implicitly closed
f.close() # when with is done.

with open (filename, 'w') as £:
“ ... file operations involving £ ...

£ implicitly closed
when with is done.

f = open (filename, 'w')
... file operations involving £ ...
f.close()

Files 15

Reading all text with read cities.txt

_ _ Wilmington
reads all lines at once as string Philadelphia

with open('cities.txt', 'r') as inputFile:
allText = inputFile.read()

Boston
Charlotte

In []: allText
Out[]: 'Wilmington\nPhiladelphia\nBoston\nCharlotte'

In []: allText.split()
Out[]: ['Wilmington', 'Philadelphia', 'Boston', 'Charlotte']

In []: moreText = inputFile.read()
ValueError: I/O operation on closed file

To notice:
The method read returns all the content of the file as a single

string. Notice how the returned string contains the newline

characters. These are chars that allow the two other methods

readline and readlines to know how to recognize lines.

In this case too, if we try to access inputFile outside the with

.. as block, we’ll get an error about operations with a closed file. Files 16

Reading all lines with readlines

reads all lines at once as list of strings
with open('cities.txt', 'r') as inputFile:

alllines = inputFile.readlines|()
In []1: alllines cities.txt
Out[]: ['Wilmington\n', 'Philadelphia\n’, Wilmington
'Boston\n', 'Charlotte\n'] Philadelphia
Boston
Charlotte

To notice:
The method readlines returns a list of all lines in a file.

Each line is a string terminated by the newline character
"\n'. These newline characters are visible in the Out[] cell,
but not if we print each line. They are also not visible in the
text file as well (see green box).
Important: Use readlines only when a file is not too large.
This is because it will read all content and store it in the RAM
memory (which, as you read in slide 2, is limited).
Files 17

Reading one line with readline

reads one line at a time

with open('cities.txt', 'r') as inputFile:
linel = inputFile.readline ()
line2 = inputFile.readline ()

In []: linel
Out[]: 'Wilmington\n'

In []: line2
Out[]: 'Philadelphial\n'

In []: line3 = inputFile.readline()
ValueError: I/O operation on closed file

To notice:
Interpret the first line as saying: open the file ‘cities.txt' for reading and

assign the variable inputFile to it, so that we can access its
content.

The indented statement is calling the method readline on the file
object inputFile to read only the first line and save it in the
variable oneline. Afterwards, the file is closed, which we can notice if
we try to use readline again on the inputFile.

cltles.txt

Wilmington
Philadelphia
Boston
Charlotte

Files

18

Reading line-by-line with a
for loop

def linesFromFile(filename) :
'"''Returns a list of all lines in the given file. In
each line, the terminating newline has been removed.
with open(filename, 'r') as inputFile: # open the file
strippedLines = []
for line in inputFile: €=

strippedLines.append(line.strip())
return strippedLines

To notice:
Within a £or loop to read the content of a file, we don’t need to

call explicitly any of the three methods that we saw. A file object is
an iterator, it knows how to iterate over its elements, which are the
lines denoted by the newline character.

This is our preferred method for reading from a file.

The string method strip removes the newline character and all
white space around the line.

Concepts in this slide:
Within a for loop, there is
no need to explicitly call
the three read methods.

No explicit
method with the
file object. That

is, no read,
readlines, or
readline.

Files 19

Concepts in this slide:

Writin g F ile S Writing to a file that is

opened for writing.

A file can be created (or opened) for writing by providing the argument ‘w’ to
open, signifying write mode.

When writing files, the syntax with .. as is very important, because forgetting
to close a file has consequences.

with open('memories.txt', 'w') as memfileW:
memfileW.write('get coffee\n')
memfileW.write('do CS111 homework\n')
memfileW.write('vote in midterm elections'\n')

At this point, the file named To notice:

memories.txt is stored persistently in * The second argument 'w' is what opens

the file system with the following the file in writing mode.

contents: ®* The strings to write in the file contain the
newline character '\n"' as their last

get coffee character to denote that a new line should

do CS111 homework start in the file.

vote in midterm elections! * The file memFileW is closed automatically.

Files 20

Appending to files

How do we add lines to an existing file? We can’t open the file in write mode (with a
"w'), because that erases all previous contents and starts with an empty file. Instead,
we open the file in append mode (with an "a'). Any subsequent writes are made
after the existing contents:

with open('memories.txt', 'a') as memfileA:
memfileA.write('win Nobel prize\n')
memfileA.write('eat big sundae\n')

Now the file memories.txt has the contents:

get coffee .
do CS111 homework If a file does not already exist,

opening it in append mode creates

vote in midterm elections!
an empty file.

win Nobel prize

eat big sundae

Files 21

. . Concepts in this slide:
Exception Handling New Python keywords:

. try and except to catch
with tr Y / excep t exceptions.

Misspelled filename: memories = linesFromFile ('memory.txt')

[OError: No such file or directory: ‘'memory.txt’

An exception 1s an error detected during execution of a program.

When part of a program raises an exception (e.g,, code for reading a file), it 1s
often better to catch and handle the exception rather than have the program
terminate abruptly with an error message (e.g., if a file doesn’t exist).

In Python, exceptions can be caught and handled with try/except statements.

try:

Lines of code that may raise an exception
except ErrorType:

Lines to execute when exception

with type ErrorType is raised

Files 22

Exception Handling Examples

try:
memories = linesFromFile ('memory.txt')
except IOError:
memories = [] # Use empty list in this case
To remember a=0
We can use try/except
y_, E try:
whenever we anticipate
. x = 8/a
errors coming from sources]
that are related to human print (x)
mistakes). print ('Do not divide by zero.')
while True:
try:
i = int(raw_input('Please enter an integer: '))

print ('Good, you entered’, i)

break # Python keyword to exit a loop
except ValueError:

print ('Not a valid integer. Try again... ')

Files

23

Challenge Problem: Reading / Writing Files

Given input: CSV file with information from the Nobel Prize Committee

1

59
60
61
62
63
64
65
66
67
68

Year

Name

1966 Samuel
1966 Nelly
1965 Mikhail
1964 Jean-Paul
1963 Giorgos
1962 John

1961 Ivo

1960 Saint-John
1959 Salvatore
1958 Boris

Agnon
Sachs
Sholokhov
Sartre
Seferis
Steinbeck
Andric
Perse
Quasimodo
Pasternak

D E F G H

Gender Citizenship Second Citizenship Born Remarks

Male Israel 1888

Female Sweden 1891

Male Soviet Union 1905

Male France 1905 Declined the prize
Male Greece 1900

Male United States 1902

Male Yugoslavia 1892

Male France 1887

Male Italy 1901

Male Soviet Union 1890 Forced to decline

Desired output: CSV file with total number of prizes per country of citizenship

O 00| N v g AW N =

-
o

A
Country
France
United States

United Kingdom

Sweden
Germany
Italy
Poland
Spain
Ireland

Total Wins

15
12
11

A O O OO ©

This is a real-wotld accumulation problem and
now you have the skills to solve such a problem
with Python.

Find all the details in the Jupyter notebook.

Files

24

Test your knowledge

In your own words, what 1s the difference between a variable and a file?

We listed many file extensions in Slide 8. Do you recognize all of them? Have
you tried to open any of these files with applications different from the ones
which created them (or that you usually open them)? What have you seen?

When developing Python programs, why would we need to read files? Why

would we need to write files?

What would be some good uses for the file methods readline, readlines,
and read?

What do the three letters "r', "w', "a' mean? Do you think one of them
can be omitted when opening a file?

What would happen 1if we try to write into a file open for reading?

How does the method readlines recognize lines, so that it can return a list of
all lines?

Challenge: suppose we have a text file open for reading, inputFile. Can you
write one line of code to print the total number of words in the file?

Files 25

