
CS111 Computer Programming

Department of Computer Science
Wellesley College

Dictionaries

Looking up English words
in the dictionary

Sequence : a group of things
that come one after the other

Collection : a group of (interesting)
things brought together for some
purpose

Concepts in this slide:
Comparing sequences to
collections.

Dictionaries 2

Looking up English words
in the dictionary

Is a sequence a collection?

Sequence : a group of things
that come one after the other

Collection : a group of (interesting)
things brought together for some
purpose

Is a collection a sequence?

Concepts in this slide:
Comparing sequences to
collections.

Dictionaries 3

Looking up English words
in the dictionary

Is a sequence a collection? Yes!

Sequence : a group of things
that come one after the other

Collection : a group of (interesting)
things brought together for some
purpose

Is a collection a sequence? No.

Concepts in this slide:
Comparing sequences to
collections.

Dictionaries 4

• A sequence is an ordered collection in which elements can be
accessed by index. All sequences are collections but not all collections
are sequences.

§ Collections
§ Find their length with len
§ Check an element membership in the collection with in
§ Are iterables (one can iterate over their elements with a loop)

§ Sequences
§ Use indices to access elements, e.g. myList[2]
§ Use slice operations to access subsequences, e.g. myList[2:5]

§ Mutable: can be changed through object methods.
§ Immutable: cannot be changed.

Properties of sequences
and collections

Concepts in this slide:
Properties that are
common and distinct for
the two categories.

Dictionaries 5

Type Description Example

list a mutable sequence of arbitrary objects [-100, "blue", (1, 10),
True]

tuple an immutable sequence of arbitrary
objects

(2017, "Mar", 2)

string an immutable sequence of characters "Go Wellesley!"

range an immutable sequence of numbers range(3)

set a mutable unordered collection of distinct
objects.

{1, 4, 5, 23}

dict a mutable unordered collection of
key:value pairs, where keys are
immutable and values are any Python
objects

{"orange": "fruit",
3: "March",
"even": [2,4,6,8]}

Python collections
Concepts in this slide:
Definitions and examples
of Python collection types.

Dictionaries 6

daysInMonth = {'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30, …}

Dictionaries

A dictionary is enclosed with curly brackets and contains comma-
separated pairs. A pair is a colon-separated key and value.

key value

A Python dictionary is a mutable collection that maps keys to
values.

monthLengths = {31: ['Jan','Mar','May','Jul','Aug','Oct','Dec'],
30: ['Apr', 'Jun','Sep','Nov'],
28: ['Feb']
}

Concepts in this slide:
New type: dictionary, its
syntax (use { }), and
key:value pairs.

Dictionaries 7

pair

keys cannot mutate
Concepts in this slide:
An analogy to P.O. box
keys. If the key is
damaged, one cannot
retrieve the content.

Dictionaries 8

keys

keys: any immutable type such as numbers, strings, or tuples.

daysInMonth = {'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30,
'May': 31, 'Jun': 30, 'Jul': 31, 'Aug': 31,
'Sep': 30, 'Oct': 30, 'Nov': 30}

phones = {5558671234: 'Gal Gadot',
9996541212: 'Trevor Noah',
7811234567: 'Paula A. Johnson'}

heroes = {('Diana', 'Prince'):['ww@dc-comics.com','Wonderwoman'],
('Peter', 'Parker'):['sm@marvel.com', 'Spiderman'],
('Clark', 'Kent'):['sm@dc-comics.com', 'Superman']}

Concepts in this slide:
Keys can only be numbers,
strings, or tuples.

To notice:
In daysInMonth, the key for December is
missing, it will be added later in the slides.

Dictionaries 9

values

values: any Python object (numbers, strings, lists, tuples, dicts, sets, even
functions)

student = {'name': 'Georgia Dome', 'dorm': 'Munger Hall',
'year': 2019, 'CSMajor?': True }

Concepts in this slide:
Differently from keys, a
value can be any object.

townNames = {'MA': ['Boston', 'Worcestor', 'Springfield'],
'CT': ['Hartford', 'Danbury', 'New Haven'] }

contributions = {'uma52': {2015: 10, 2016: 15},
'setam$3': {2012: 23, 2013: 34, 2014: 17},
'rid12': {2009: 5, 2010: 18, 2012: 4}

}

Dictionaries 10

How do we create dictionaries?
1. Literal dictionary: provide keys and pairs together, delimited with { }
In [1]: scrabbleDict = {'a': 1, 'b': 3, 'c': 3, 'd':
2, 'e': 1, 'f': 4, 'g': 2, 'h': 4, 'i': 1, 'j': 8,
'k': 5, 'l': 1, 'm': 3, 'n': 1, 'o': 1, 'p': 3, 'q':
10, 'r': 1, 's': 1, 't': 1, 'u': 1, 'v': 4, 'w': 4,
'x': 8, 'y': 4, 'z': 10}

2. Start with an empty dict and add key/pairs
In [2]: cart = {} # an empty dict
In [3]: cart['oreos'] = 3.99
In [4]: cart['kiwis'] = 2.54
In [5]: cart
Out[5]: {'kiwis': 2.54, 'oreos': 3.99}

3. Applying the built-in function dict to a list of tuples:

In [6]: dict([('DEU', 49), ('ALB', 355), ('UK', 44)])
Out[6]: {'ALB': 355, 'DEU': 49, 'UK': 44}

Concepts in this slide:
Three common ways to
create dictionaries.

To notice:
The output Out[5] doesn’t
show the items in the
dictionary in the same order
they were added. Never
except that items will be
ordered.

Dictionaries 11

Dictionary Operations:
subscripting

In [7]: daysInMonth['Oct']
Out[7]: 31

In [8]: heroes[('Peter', 'Parker')]
Out[8]: ['sm@marvel.com', 'Spiderman']

In [9]: phones[5558671234]
Out[9]: 'Gal Gadot'

In [10]: townNames['CT'][2]
Out[10]: 'New Haven'

In [11]: contributions['rid12'][2010]
Out[11]: 18

The value associated with a key is accessed using the same
subscripting notation with square brackets used for list indexing:

key list index

key key

Concepts in this slide:
We use the subscripting
notation with key(s) to
access values.

To notice:
Inputs [10] and [11] use
double subscription to access
elements that are nested
within complex values. In
In[10], an element within a
list, in In[11] a value within
a nested dictionary.

Dictionaries 12

Dictionary Operations:
check with in before accessing

In [12]: daysInMonth['October']

KeyError
Traceback (most recent call last)
<ipython-input-4-3d32324d55ec>
in <module>()
----> 1 daysInMonth['October']

KeyError: 'October'

Subscripting a dictionary with
an invalid key raises a
KeyError:

In [13]: 'Oct' in daysInMonth
Out[13]: True

In [14]: 'October' in daysInMonth
Out[14]: False

One way to avoid such
errors is to use in to check
if a key exists

Concepts in this slide:
Non-existing keys raise an
error, use the operator in
to check if key exists.

Dictionaries 13

Mutability in Dictionaries
Dictionaries are mutable

remember the variable daysOfMonth?

daysInMonth = {'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30,
'May': 31, 'Jun': 30, 'Jul': 31, 'Aug': 31,
'Sep': 30, 'Oct': 30, 'Nov': 30}

• We can add or remove key-value pairs
• We can change the value associated with a key

daysInMonth['Feb'] = 29 # change for leap year
daysInMonth['Dec'] = 31 # add new key and value

Reminder: dictionary keys must be immutable
Eg: a list or a dict cannot be a key (only immutable values such as
numbers, strings, and tuples)

Concepts in this slide:
The only immutable things
in a dictionary are its
keys.

Dictionaries 14

Memory diagram for a dictionary

2

student = {'name': 'Alex Lee', 'dorm': 'Munger Hall',
'section': 2, 'year': 2023, 'CSMajor?': True}

student 'name'

'dorm'

'Alex Lee'

'Munger Hall'

'section'

2023'year'

True'CSMajor?'

Notice how the “keys” are shown similarly to the indices in sequences.
However, they are not ordered in any meaningful way.

Memory Diagram
note:
Only primitive values such as
numbers, Booleans, and None
are displayed within the slots.
Other values (strings, tuples,
lists, objects) are shown
outside.

Dictionaries 15

Dictionaries are Mutable:
change value for key
The value associated with a key can be changed by
combining subscript and assignment notation:

In [16]: student['dorm'] = 'Cazenove Hall'

In [17]: student
Out[17]: {'CSMajor?': True, 'dorm': 'Cazenove Hall',
'name': 'Alex Lee', 'section': 2, 'year': 2023}

2

student 'name'

'dorm'

'Alex Lee'

'Munger Hall'

'section'

2023'year'

True'CSMajor?'

'Cazenove Hall'

Concepts in this slide:
An assignment statement
is used to add new
key/value pairs or change
existing ones.

To notice:
Canopy displays dictionaries
with string-valued keys in
ASCII order (see Out[22]).
But, this is not true in other
environments, thus, don’t
rely on order or keys.

Dictionaries 16

Dictionaries are Mutable:
add key/value pair

A new key/value pair can be added by assigning to a key not already in the
dictionary:

2

student 'name'

'dorm'

'Alex Lee'

'section'

2023'year'

True'CSMajor?'

'Cazenove Hall'

In [18]: student['psets'] = [95, 75, 0, 75]

In [19]: student
Out[19]: {'CSMajor?': True, 'dorm': 'Cazenove Hall',
'name': 'Alex Lee', 'psets': [95, 75, 0, 75],
'section': 2, 'year': 2023}

'psets'

0 1 2 3

95 75 0 75

Concepts in this slide:
Adding key/value pairs is
the most common way to
create and change dicts.

Dictionaries 17

Dictionaries are Mutable:
remove key/value pair
A key/value pair can be removed by the pop method, which returns the old
value in addition to removing the key/value pair:

student 'name'

'dorm'

'Alex Lee'

2023'year'

True'CSMajor?'

'Cazenove Hall'

'psets'

0 1 2 3

95 75 0 75

In [20]: student.pop('section')
Out[20]: 2 # returns the value associated with 'section'

In [21]: student
Out[21]: {'CSMajor?': True, 'dorm': 'Cazenove Hall',
'name': 'Alex Lee', 'psets': [95, 75, 0, 75], 'year':
2023}

Concepts in this slide:
The method pop with dicts
always requires an
argument. Why?

Dictionaries 18

Dictionaries are Mutable:
update
An existing dictionary can be updated with new key/pair values
through the update method. Here is an example with the contributions
dictionary:

In [22]: contributions
Out[22]: {'uma52': {2015: 10, 2016: 15},

'setam$3': {2012: 23, 2013: 34, 2014: 17},
'rid12': {2009: 5, 2010: 18, 2012: 4}}

In [23]: newDonors = {'max**': {2011: 39, 2013: 27, 2015: 41},
'dev11': {2020: 21}}

In [24]: contributions.update(newDonors) # no output

In [25]: contributions
Out[25]: {'uma52': {2015: 10, 2016: 15},

'setam$3': {2012: 23, 2013: 34, 2014: 17},
'rid12': {2009: 5, 2010: 18, 2012: 4},
'max**': {2011: 39, 2013: 27, 2015: 41},
'dev11': {2020: 21}}

Concepts in this slide:
We can use update to
change several key/value
pairs at one time.

Dictionaries 19

Dictionary Methods: get

The get method is an alternative to using subscripting to get the value
associated with a key in a dictionary. It takes two arguments:

(1) the key
(2) a default value to use if the key is not in the dictionary

In [26]: daysInMonth.get('Oct', 'unknown')
Out[26]: 31

In [27]: daysInMonth.get('OCT', 'unknown')
Out[27]: 'unknown'

Concepts in this slide:
Method get is used to avoid
the KeyError.

It is possible to use get without a second argument (it is optional). In this case, if
the key doesn’t exist, get will return None. To see it, we need to print the value:

In [28]: print(daysInMonth.get('OCT'))
None

Dictionaries 20

Dictionary Methods:
keys, values, items

The keys, values, and items method invocations on a dictionary return,
respectively, objects holding the keys, values, and key/value pairs for a dictionary:

In [29]: daysInMonth.keys()
Out[29]: dict_keys(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul',
'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])

In [30]: daysInMonth.values()
Out[30]: dict_values([31, 28, 31, 30, 31, 30, 31, 31, 30, 30, 30, 31])
Values have same order as keys from .keys() method invocation
The type here is dict_values

In [31]: daysInMonth.items()
Out[31]: dict_items([('Jan', 31),('Feb', 28), ('Mar', 31),('Apr',
30),('May', 31), ('Jun', 30), ('Jul', 31),('Aug', 31),('Sep’,30),
('Oct', 30), ('Nov', 30),('Dec', 31)])
Items have same order as other two methods. The type is dict_items.

Concepts in this slide:
All three dict methods: keys,
values, items return a list
with synchronized order.

Dictionaries 21

The objects returned by these three methods are so-called dictionary view objects.
If the underlying dictionary changes after these are created, these dictionary view
objects will reflect those changes.

Iterating over keys in a dictionary

To iterate over the keys in a dictionary, use for key in dict :
There is no need to use dict.keys()!

In [32]: for num in phones:
print(phones[num], num)

Gal Gadot 5558671234
Trevor Noah 9996541212
Paula A. Johnson 7811234567

Concepts in this slide:
Use for key in dict: to
iterate over the keys of a
dictionary; don’t use .keys()

Dictionaries 22

In [33]: for month in daysInMonth:
print(month, daysInMonth[month])

May 31
Aug 31
Nov 30
...

In [33]: for first, last in heroes:
print(f"{first} {last} is " +\

f"{heroes[(first, last)][1]}'s alter ego.")

Diana Prince is Wonderwoman's alter ego.
Peter Parker is Spiderman's alter ego.
Clark Kent is Superman's alter ego.

These braces are placeholders
in the format string;
they have nothing to do
with dictionaries.

Dictionaries 23

Iterating over keys in a dictionary

In [34]: for month in daysInMonth:
print(f"*{month} has {daysInMonth[month]} days.*")

May has 31 days.
Aug has 31 days.
Nov has 30 days.
...

Iterating over/membership in dictionaries

Similarly, when testing if a key is in a dictionary, just write
if someKey in someDict:

because they have a similar meaning, but the latter creates an unnecessary object.

if someKey in someDict.keys():

In Python 3, the unnecessary .keys() returns a dict_keys object that still
allows efficient membership tests and iteration, so there’s not a big downside to
using .keys(). But in Python 2, .keys() returns a newly constructed list
that can lead to significant inefficiencies for big dictionaries.

Dictionaries 24

rather than

When iterating over the keys in a dictionary, just write
for someKey in someDict:

for someKey in someDict.keys():

rather than

Iterating over values & items
in a dictionary
.values() and .items() are useful for iterating over values
of key:value pairs of dictionary:

In [29]: for number, name in phones.items():
print(f"Call {name} at {number}."

Call Gal Gadot at 5558671234.
Call Trevor Noah at 9996541212.
Call Paula A. Johnson at 7811234567.

To notice:
The method .items returns
a list of tuples, so we can use
tuple assignment to assign to
the key and value at the same
time.

Concepts in this slide:
Iterating over the values
and key:value pairs in a
dictionary.

Dictionaries 25

In [28]: for name in phones.values():
print(f"Call {name}!")

Call Gal Gadot!
Call Trevor Noah!
Call Paula A. Johnson!

Summary of dictionary methods

Method Result Mutates
dict?

.keys() Returns all keys as a dict_keys object No
.values() Returns all values as a dict_values object No
.items() Returns (key, value) pairs as a dict_items object No

.get(key [, val]) Returns corresponding value if key in dict,
else returns val. The notation [, val] means that
the second argument val is optional and can be
omitted. If it is not specified, it defaults to None.

No

.pop(key) Removes key:val pair with given key from dict and
returns associated val. Signals KeyError if key
not in dict.

Yes

.update(dict2) Adds new key:value pairs from dict2 to dict,
replacing any key:value pairs with existing key.

Yes

.clear() Removes all items from the dict. Yes

Dictionaries 26

An Application for dictionaries:
Word Frequencies

Concepts in this slide:
An algorithm represented
as a flow chart diagram to
solve a common problem.

We will implement the
solution for this
problem and others
like this one in the
Notebook in class.

Dictionaries 27

Mutability with hash

What does this error mean? It turns out, Python stores keys of a dictionary as
hash values, generated by the hash function. This is why dictionaries are also
known as hashtables, especially in other programming languages.

In [31]: hash("Wellesley")
Out[35]: 1371402960993349759

In [31]: hash((2015,10))
Out[36]: 3711745792089893406

In [31]: hash(1234)
Out[37]: 1234

Only immutable objects have
hash values. We’ll get an error for
mutable objects.

In [31]: hash([1,2,3])

TypeError: unhashable type: 'list'

In [34]: daysOfMonth[['Feb', 2015]] = 28

TypeError: unhashable type: 'list'

When trying to use a mutable value as key for a dictionary, we’ll get an error:

Dictionaries 28

Summary
1. A dictionary is a new Python data type that is a kind of collection. It differs

from lists because it stores together pairs of keys and values. We use keys to
access values.

2. Keys are always immutable (numbers, strings, ranges, and tuples), while values
can be any Python object.

3. There are at least three different ways to create a dictionary, but the most
common one is to start with an empty dict and add keys and values while
iterating over some other data sequence.

4. Dictionaries are mutable, we can change the values through their keys, add
new key/value pairs, and remove existing ones. Three examples of methods
that mutate the dictionary are .pop, .update, and .clear.

5. An important method that avoids encountering the KeyError (in case the
key doesn’t exist) is .get, which can be used with one or two arguments.

6. The methods .keys, .values, and .items return dictionary view
objects that track later changes to the dictionary.

7. Rather than writing key in myDict.keys(), just write key in myDict
when iterating or testing membership in a dictionary.

Dictionaries 29

Test your knowledge

Dictionaries

1. What is the main difference between data types that are sequences and those
that are collections?

2. Would you need to use range to generate indices to access the elements of a
dictionary? Explain.

3. Which has to be unique: the keys or the values of the dictionary?
4. When iterating over the values of a dictionary as in slide 26, is it possible to

access the keys too? Explain. Which of the dictionaries defined in slides 6 and
8 would be a good example to make your point.

5. The diagram in slide 26 shows two boxes for assigning values to the
freqDict[word]. How can you replace the if statement and those two
assignments by one of the dictionary methods you learned?

30

