
CS111 Computer Programming

Department of Computer Science
Wellesley College

Conditionals

Overview: Making Decisions

Conditionals 2

If “is it raining”:
take the umbrella
wear rainboots
wear raincoat

Else:
wear sandals
wear a summer dress

“Is it raining” is an expression that can
return True or False.
In a Python program we can use:
- True/False values
- Relational Expressions
- Logical Expressions
- Predicates
(all evaluate to True/False) whenever
the code needs to make a decision for
what to do next.

3

Conditionals (if Statements)
Boolean expressions are used to choose between two courses of
action in a conditional statement introduced by the keyword if.

if boolean_expression:
statement1
statement2
statement3

else:
statement4
statement5

def abs(n):
'''returns absolute value'''
if n < 0:

return –n
else:

return n

Above is the Python syntax for expressing
conditional statements. Notice:
- Colons at the end of line for if and

else
- Indentation for lines succeeding if

and else
Note: “else” clause is optional! Conditionals

Concepts in this slide:
Conditional statement
syntax involving if and
else.

Flow Diagrams

“else”
clause

statement1

bool_expression

statement4

True False

statement2

statement3

statement5
“then”
Clause
(if true,

then…)

4Conditionals

Concepts in this slide:
Flow diagrams: a model
to understand branched
execution.

The Road Not Taken

Two roads diverged in a yellow wood,
And sorry I could not travel both

Robert Frost
IMPORTANT: Only one of the branches is
ever executed when a conditional statement is
encountered. That is what the Flow Diagram
exemplifies.

def abs(n):
'''returns absolute value'''
if n < 0:

return –n
return n

5

Expressing the Same Function Two Ways

Are these two functions logically equivalent?
Do they return the same answer for all inputs?

def abs(n):
'''returns absolute value'''
if n < 0:

return –n
else:

return n

Conditionals

Notice the missing
else

Nested Conditionals

if boolean_expression1:
statement1
statement2

else:
if boolean_expression2:

statement3
statement4

else:
statement5
statement6`

def movieAge(age):
if age < 8:

return 'G'
else:

if age < 13:
return 'PG'

else:
if age < 18:

return 'PG-13'
else:

return 'R'
6Conditionals

Concepts in this slide:
Syntax for nested
conditionals, example of
nesting.

7

A Better Approach:
Chained Conditionals

def movieAge(age):
if age < 8:

return 'G'
elif age < 13:

return 'PG'
elif age < 18:

return 'PG-13'
else:

return 'R'

if boolean_expression1:
statement1
statement2

elif boolean_expression2:
statement3
statement4

elif boolean_expression3:
statement5
statement6

else:
statement7
statement8

Conditionals

Concepts in this slide:
New keyword: elif.
Replace nesting with
chaining of conditionals.

Compare this implementation of
movieAge with that of the previous slide.
For chained conditionals, we write less code,
which is also easier to read because of fewer
indentations.

Flow Diagram:
Chained Conditionals

8

True False

test1
True False

test2

test3
False

...
...

...

True

...

Conditionals

Concepts in this slide:
Another example of the
flow diagram model for
branched execution.

IMPORTANT: In the moment one of the
tests is True, the associated statements are
executed and the chained conditional is exited.
Only in the case when tests are False, we
continue checking to find a True test.

isVowel revisited

def isVowel(char):
letter = char.lower()
return letter == ('a' or 'e' or 'i' or 'o' or 'u')

def isVowel(char):
letter = char.lower()
return letter == 'a'

Because by Python’s treatment of truthy/falsey values,
it’s equivalent to

9Conditionals

The following definition doesn’t work. Why?

Simplifying Boolean Expressions and Conditionals
There are several code patterns involving boolean expressions and conditionals
that can be simplified. The unsimplified versions are considered to be bad style and will be
flagged by uur Codder tool. Below BE stands for any expression evaluating to a boolean,
and STMS stands for any statements.

10Conditionals

Complex
Expr/Stmt

Simpler
Expr/Stmt

Complex
Expr/Stmt

Simpler
Expr/Stmt

BE == True BE BE == False not BE

if BE:
return True

else:
return False

return BE if BE:
return False

else:
return True

return not BE

if BE1:
return BE2

else:
return False

return BE1 and BE2 if BE1:
return True

else:
return BE2

return BE1 or BE2

if BE:
STMS
return True

else:
STMS
return False

STMS
return BE

result = BE
return result

return BE

Simplifying Boolean Expressions
and Conditionals: Example

11Conditionals

def doesNotBeginWithVowel(s):
if isVowel(s[0]) == False

return True
else:

return False

def doesNotBeginWithVowel(s):
if not isVowel(s[0])

return True
else:

return False

def doesNotBeginWithVowel(s):
return not isVowel(s[0])

All Python values are either Truthy or Falsey

def testTruthy(val):
if val:
return 'Truthy'

else:
return 'Falsey'

testTruthy(True) 'Truthy'
testTruthy(False) 'Falsey'
testTruthy(17) 'Truthy'
testTruthy(0) 'Falsey’
testTruthy('hello') 'Truthy'
testTruthy('') 'Falsey'
testTruthy(None) 'Falsey'
testTruthy([1,2,3]) 'Truthy'
testTruthy([]) 'Falsey'

Unexpectedly, in the context of if, and, and or, Python treats a small
number of so-called Falsey values (0, '', None, [], (), and {}) as
False and all other values as True (so-called Truthy values).
In general, we think it is bad style to write code that depends on this
fact; use Boolean expressions instead!

0 or 4 4
5 or 6 5
0 and 7 0
8 and 9 9
'' or 'a' 'a'
'b' or 'c' 'b'
'' and 'd' ''
'e' and 'f' 'f'

12Conditionals

