
CS111 Computer Programming

Department of Computer Science
Wellesley College

Booleans, Logical Expressions,
and Predicates

Making Decisions
Concepts in this slide:
Real-life examples for
decision making with
Boolean values.

If it’s raining then bring umbrella and wear boots.

If timer is up, then do not cross
2Booleans

But first, is the condition
true or false?

Concepts in this slide:
Real-life examples for
decision making with
Boolean values.

It is raining:
True

Rock beats scissors: True
Paper beats rock: True
Scissors beats paper: True

The timer is up: False

3Booleans

New values: Booleans

Python has two values of bool
type, written True and False.
The values must be capitalized.

Concepts in this slide:
New type: bool, and new
values: True and False.

4Booleans

These are called logical values or
Boolean values, named after
19th century mathematician
George Boole.

“equals”

Relational Operators
Booleans most naturally arise in the context of relational operators
that compare two values.

In [1]: 3 < 5
Out[1]:

In [2]: 3 < 2
Out[2]:

In [3]: 3 > 2
Out[3]:

In [4]: 5 <= 1
Out[4]:

In [5]: 5 >= 1
Out[5]:

In [6]: 5 == 5
Out[6]:

In [7]: 5 == 6
Out[7]:

In [8]: 5 != 6
Out[8]:

Note == is pronounced "equals" and != is pronounced "not equals". This is why
we distinguish the pronunciation of the single equal sign = as "gets", which is
assignment and nothing to do with mathematical equality!

“not
equals”

True

False

True

False

True

True

False

True

Concepts in this slide:
New operators: relational.
They are: >, <, ==, !=, >=, <=

5Booleans

Relational Operators [cont.]
The relational operators can also be used to compare strings
(in dictionary order, meaning, something is smaller if it is earlier in the dictionary):

In [1]: 'bat' < 'cat'
Out[1]:

In [2]: 'bat' < 'ant'
Out[2]:

In [3]: 'bat' == 'bat'
Out[3]:

In [4]: 'bat' < 'bath'
Out[4]:

In [5]: 'Cat' < 'bat'
Out[5]:

In Python (and most other
programming languages) uppercase
letters come before lowercase
letters in string ordering. See
Digging Deeper section about
the reason.

True

False

True

True

True

Concepts in this slide:
Relational expressions
with string values.

6Booleans

Important
If you want to compare two strings,
always use the relational operators,
no need to try to compare every
element of the string. Python does
that automatically for you.

Logical Operators in plain English
a: the cake has pineapple False
b: the cake is chocolate True
c: the cake has walnuts True
d: the cake is square False

Not
not a: the cake does not have pineapple True/False?

And
a and b: the cake has pineapple & the cake is chocolate True/False?
b and c: the cake is chocolate & the cake has walnuts True/False?

Or (slightly different from English…)
a or b: the cake has pineapple or the cake is chocolate True/False?
b or c: the cake has chocolate or the cake has walnuts True/False?
a or d: the cake has pineapple or the cake is square True/False?

Concepts in this slide:
New operators: logical.
They are and, or, not.

7Booleans

Logical Operators in
Venn Diagrams

not a
a

a and b
a b

a or b

a b

Concepts in this slide:
Venn diagrams, visual
representation of logical
operations.

8Booleans

Logical
operators are
used in everyday
speech (see
Slide 6), but also
consistently in
Math and CS.

Logical Operators:
not, and, or
not exp evaluates
to the opposite of
the truth value of
exp

In [1]: not (3 > 5)
Out[1]:

In [2]: not (3 == 3)
Out[2]:

In [3]: (3 < 5) and ('bat' < 'ant')
Out[3]:
In [4]: (3 < 5) and ('bat' < 'cat')
Out[4]:

In [5]: (3 > 5) or ('bat' < 'cat')
Out[5]:
In [6]: (3 > 5) or ('bat' < 'ant')
Out[6]:

exp1 and exp2
evaluates to True
iff both exp1 and
exp2 evaluate to
True.

exp1 or exp2
evaluates to True
iff at least one of
exp1 or exp2
evaluates to True.

True

False

False

True

True

False

Concepts in this slide:
Logical operators work
with Boolean values or
relational expressions.

9Booleans

Truth Tables: and
exp1 exp2 exp1 and exp2
True True True
True False False
False True False
False False False

exp1 exp2 exp1 or exp2
True True
True False
False True
False False

Truth Tables: or

False

True

True

True

Concepts in this slide:
and / or expressions
produce different Boolean
values.

10Booleans

Combining logical operators
What cake do I like?

(cake is chocolate) or (cake has pineapple) and (cake is square)

((cake is chocolate) or (cake has pineapple)) and (cake is square)

and takes precedence over or (like * over +)

Parentheses take precedence

11Booleans

Short-circuit evaluation of and and or

In[14]: ((1/0) > 0) and (2 > 3)

ZeroDivisionError Traceback (most recent call last)
<ipython-input-17-5e0d829f2dca> in <module>()
----> 1 ((1/0) > 0) and (2 > 3)

ZeroDivisionError: integer division or modulo by zero

In[15]: (2 > 3) and ((1/0) > 0)
Out[15]: False

In[16]: (2 < 3) or ((1/0) > 0)
Out[16]: True

In exp1 and exp2 or exp1 or exp2, the expression
exp2 is not evaluated if the answer is determined by exp1.

12Booleans

Predicates
A predicate is a function that returns a Boolean value.
def isDarth (name):

"""determines if name is Darth Vader"""
return name == 'Darth Vader'

def isDivisibleBy(num, factor):
"""determines whether num is divisible by factor"""
return (num % factor) == 0

def isEven(n):
"""determines whether n is even"""
return isDivisibleBy(n, 2)

def sameLength(s1, s2):
"""determines whether strings s1 and s2 have the
same length"""
return len(s1) == len(s2)

Concepts in this slide:
Definition and examples
of predicates.

13Booleans

Note: The triple-quoted
strings are the function
docstrings.

More Predicates
def isBetween(n, lo, hi):

"""determines if n is between lo and hi"""
return (lo <= n) and (n <= hi)

def isSeason(s):
"""determines if s is one of the four seasons"""
return (s == 'Winter' or s == 'Spring'

or s == 'Summer' or s == 'Autumn')

def isSmallPrime(n):
"""determines if n is a prime integer less than 100"""
return (isinstance(n, int)

and (n > 1) and (n < 100)
and (n == 2 or n == 3 or n == 5 or n == 7

or not (isDivisibleBy(n,2)
or isDivisibleBy(n,3)
or isDivisibleBy(n,5)
or isDivisibleBy(n,7))))

Concepts in this slide:
Examples of predicates
with complex logical
expressions.

14Booleans

Preview: Some useful string operations
We will cover strings and other “sequence” types like tuples and lists in a few
lectures, but here are some useful operations that come handy when writing
predicates.

The square bracket []operator can be used to index (access) an element of a string.

In [1]: name = 'Esmeralda'
In [2]: name[0]
Out[2]: 'E'

In [3]: name[1]
Out[3]: 's'

In [4]: name.lower()
Out[4]: 'esmeralda'

In [5]: name
Out[5]: 'Esmeralda'

To notice:
• The index of the first character

is 0 not 1, as you would expect.
That is a quirk of many
programming languages.

• The method lower returns a
new string that is the lowercased
version of the original one,
which doesn’t change. This
behavior is different from
cs1graphics objects.

15Booleans

in and not in test for substrings

In [4]: 'get' in 'generation'
Out[4]: False

In [5]: 'nerati' in 'generation'
Out[5]: True

s1 in s2 tests if string s1 is a substring of string s2

16Booleans

In [1]: 'i' in 'generation'
Out[1]: True

In [2]: 'u' in 'generation'
Out[2]: False

In [3]: 'era' in 'generation'
Out[3]: True

What other English words are in
the string 'generation'?

s1 not in s2 is the same as not s1 in s2

In [6]: 'era' not in 'generation'
Out[6]: False

In [7]: 'get' not in 'generation'
Out[7]: True

Your Turn: Write these predicates

In [6]: isVowel('E')
Out[6]: True

In [7]: isVowel('b')
Out[7]: False

Exercise 1: Write the predicate isVowel that behaves as shown
below:

Exercise 2: Use the predicate isVowel that you wrote above to
write a new predicate startsWithVowel that behaves like shown:

In [8]: startsWithVowel('Esmeralda')
Out[8]: True

In [9]: startsWithVowel('bravery')
Out[9]: False

17Booleans

Continuation Characters in Long Expressions

def isSeason(s):
"""determines if s is one of the four seasons"""
return s == 'Winter' or s == 'Spring' \

or s == 'Summer' or s == 'Autumn'

def isSmallPrime(n):
"""determines if n is a prime integer less than 100"""
return isinstance(n, int) \

and (n > 1) and (n < 100) \
and (n == 2 or n == 3 or n == 5 or n == 7

or not (isDivisibleBy(n,2)
or isDivisibleBy(n,3)
or isDivisibleBy(n,5)
or isDivisibleBy(n,7)))

If you want to write expressions without parens that span multiple lines, you must use
the backslash continuation character to end each line (and this character cannot be
followed by any other character except newline). These multiline expressions cannot
contain embedded comments, such as # Is n an integer?

18Booleans

No continuation
characters needed in

parenthesized expressions

Parentheses Instead of Continuation Characters

def isSeason(s):
"""determines if s is one of the four seasons"""
return (s == 'Winter' or s == 'Spring'

or s == 'Summer' or s == 'Autumn')

def isSmallPrime(n):
"""determines if n is a prime integer less than 100"""

return (isinstance(n, int)
and (n > 1) and (n < 100)
and (n == 2 or n == 3 or n == 5 or n == 7

or not (isDivisibleBy(n,2)
or isDivisibleBy(n,3)
or isDivisibleBy(n,5)

or isDivisibleBy(n,7))))

You can avoid continuation characters by wrapping the expression in
explicit parentheses, like the big blue parentheses below:

19Booleans

In computer programs, all data is stored as numbers (binary numbers made of
0 and 1s. Take CS 240 to learn more). ASCII is a standard that specifies the
mapping between keyboard characters and numbers. When you compare “A”
and “a”, you are comparing the underlying numbers 65 and 97.

20Booleans

ASCII Table: uppercase vs. lowercase

Test your knowledge
1. What is the result of relational expressions? What is the result of logical

expressions? What makes them different?
2. How does the comparison of string values work? Can you provide an

example to illustrate?
3. Operators like > , or are called binary operators, while not is called a

unary operator. Can you give an educated guess for the why?
4. [MATH] Relational operators are used in Math to describe intervals of

numbers. Draw a picture showing the interval 10 to 20 (excluding 20). How
would you write this in Python? What about the intervals of numbers less
than 5 but greater than 15. Drawing the picture helps visualize relations.

5. Write the Truth Table for the expression not (exp1 and exp2)
6. Is there any difference between a predicate and a function?
7. What is the result of the expression '$' > '%' . How would you

explain that to someone?
8. In the expression 3 < 5 and 'bat' < 'cat' (notice there are no

parens), does and have priority over <? Explain.

21Booleans

