
CS111 Computer Programming

Department of Computer Science
Wellesley College

Accumulation Pattern
for Lists and Dictionaries

Recap: Accumulation for different types

Accumulation Pattern 2

Accumulator variable as an integer

Accumulator variable as a string

Accumulator variable as a list

Accumulator variable as a dictionary

Accumulation with dict and list types [1]

Accumulation Pattern 3

Goal: group names by
their lengths.

names = ['Andy', 'Carolyn', 'Eni', 'Lyn', 'Peter', 'Sohie']

{4: ['Andy'],
7: ['Carolyn'],
3: ['Eni', 'Lyn'],
5: ['Peter', 'Sohie']}

This is a double
accumulation pattern:
the dictionary is
accumulating name
lengths (as keys), and
for each key, we’re
accumulating the
names with a certain
length.

Accumulation with dict and list types [2]

Accumulation Pattern 4

Goal: a vowel index
(like the book index)
that shows all names
with a certain vowel
(no duplicates). This
is hard!

names = ['Andy', 'Carolyn', 'Eni', 'Lyn', 'Peter', 'Sohie']

{'a': ['Andy', 'Carolyn'],
'o': ['Carolyn', 'Sohie'],
'e': ['Eni', 'Peter', 'Sohie'],
'i': ['Eni', 'Sohie']}

This is one possible
solution, but
somewhat complex.
It uses nested loops
and nested
conditionals.

A simpler solution with dict comprehension

Accumulation Pattern 5

names = ['Andy', 'Carolyn', 'Eni', 'Lyn', 'Peter', 'Sohie']

{'a': ['Andy', 'Carolyn’],
'e': ['Eni', 'Peter', 'Sohie’],
'i': ['Eni', 'Sohie’],
'o': ['Carolyn', 'Sohie'],
‘u’: []}

Goal: a vowel index
(like the book index)
that shows all names
with a certain vowel
(no duplicates). This
is hard!

Example: Write a dictionary comprehension that pairs words with their
lengths.

In [1]: wordsLst = 'the autumn is dragging its feet'.split()

In [2] {word: len(word) for word in wordsLst}

Out[2]: {'autumn': 6, 'dragging': 8, 'feet': 4, 'is': 2,
'its': 3, 'the': 3}

Very much like list comprehension: use {} instead of [] and create
pairs with the colon syntax, e.g., aKey: aValue.

Syntax: { aKey: aValue for aKey in sequence}

Dictionary Comprehension

Accumulation Pattern

Concepts in this slide:
Dictionary comprehension
is very similar to list
comprehension.

Important
We can use dictionary comprehension in situations
when we want to start accumulation with a complex
data structure (as in the previous slide). 6

Why should we care about nested data
structures?

Accumulation Pattern 7

Real-world data are stored as nested data structures.
Most of the content on the web is transferred from a
computer to another in a format known as JSON
(Javascript Object Notation), which represents dicts
and lists nested in each other.

Same
content,
but in
different
format.

The json module

Accumulation Pattern 8

Functions to read and write JSON data from / into files.

json.load – load JSON data from a file open for reading
json.dump – dump JSON data into a file open for writing

Usage:
json.load(fileObj)

json.dump(dictObj,
fileObj)

Challenge Problem: Manipulate JSONs

Accumulation Pattern 9

You are given a JSON file with tweets (their text and id):
[{'id': 1072284009122586625, 'text': 'The case of Jacob Walter Anderson from
@Baylor is the perfect amalgamation between the #MeToo and #BlackLivesMatter
movements. #ThisIsWhyWeAreAngry’},
{'id': 1071990529448075264, 'text': 'Now, that you all have some background
information to this short story, please go read it at 👉👉👉
https://t.co/KRGkjbNJbY 👈👈👈 #NoJusticeNoPeace #BlackLivesMatter
#MissionFree #DefendOurFreedom 😎'}]

We want to answer the following question:

• Which are the most frequently mentioned hashtags?

We can answer this question via Python code that makes use of the
accumulation pattern with dictionaries.

Use the notebook to answer this question (in a guided way).

https://t.co/KRGkjbNJbY

How to use accumulation to solve a real-
word problem?

(more challenging material on accumulation)

Real-world problem: Language Detection

Accumulation Pattern

Question:
How would you write a computer program that takes some text as input
and outputs the language in which the text was written? The Chrome
browser does that all the time (see images)!

11

Tirana është gjithmonë një hap përpara; po
mendojmë për ditët e ftohta dhe me shi, kur
mund të kemi emergjenca civile. Këto janë të
pashmangshme dhe pavarësisht histerisë, as
kryetari i Bashkisë, as Kryeministri apo
kushdo tjetër nuk mundet ta ndalojë shiun apo
të rregullojë infrastrukturën e keqndërtuar
ndër vite, që janë kryesisht ndërtime pa leje
buzë lumenjve apo në hapësira të tjera publike.

「第８回日本ジオパーク全国大会男
鹿半島・大潟大会」が２５日、３日間
の日程で秋田県の男鹿市と大潟村
で開幕した。東北での全国大会開催
は初めて。自治体関係者やガイド、
研究者ら約千人が集まり、パネルデ
ィスカッションなどを通してジオパーク
の活用策を考えた。両市村と関連団
体などでつくる実行委員会の主催。

Globálny ekonomický rast je určite
slušný – rozhodne z pohľadu posledných
desiatich rokov. No zároveň je aj úbohý –
z pohľadu posledných tridsiatich rokov.
V podstate je iba polovičný tomu, čo svet
zažíval na konci osemdesiatich rokov,
celé deväťdesiate roky a predkrízové
roky tohto storočia. Smutnou realitou je,
že svetu nestačí takto nízky rast. Svet je
nastavený na viac.

A világ legnagyobb fizetési hálózatának működési
bevétele az amerikai gazdasági aktivitás kétharmadát
adó személyi fogyasztás folyamatos élénkségének
köszönhetően 14 százalékkal 4,86 milliárd dollárra
emelkedett. Az eredményben az is szerepet játszott,
hogy a Visa Inc. a múlt év közepén megvásárolta a Visa
Europe Ltd. céget. A működési költségek alig változtak,
1,64 milliárd dollárt tettek ki.
A Visa kártyákkal lebonyolított fizetések összege 9,8
százalékkal 1,93 ezer milliárd dollárra emelkedett, ennek
43 százaléka az Egyesült Államokra jutott.

Accumulation Pattern

How do we parse language?

12

Creating language features from text

Accumulation Pattern

1. Looking at the character sets: Latin,
Cyrillic, Greek, CJK (Chinese, Japanese,
Korean), etc. can provide a first
categorization into language families.

2. Looking at one-letter, two-letter or three-
letter words and their frequency in a text.

3. Character n-grams and their frequency.
4. Word n-grams and their frequency.

If we learn that the family
is Latin, that doesn’t solve the
problem, because there are so many
languages that use Latin characters.

These are known as functional
words.

Each language might have a unique
signature: a unique frequency
distribution of these n-grams.

What are n-grams?
Given the word: “book”, the character n-grams are
sequences of characters with different size. Unigrams: b, o,
k. Bigrams: bo, oo, ok. Trigrams: boo, ook.
Word n-grams deal with sentences. “I like red cherries” will
have as bigrams: “I like”, “like red”, “red cherries”.
N-grams are a common model for representing language in
the field of Natural Language Processing (a subfield of
Artificial Intelligence). 13

Accumulation Pattern

Comparing character bigrams in
different languages

Top 30 bigrams for English (%).

Top 30 bigrams for Spanish (%).

To notice:
• The top 3 bigrams for English

cannot be found at all in the list of
Spanish bigrams.

• The two lists have 14 bigrams in
common out of 30 (less than half).

• The bigrams that are in common
have different frequency. E.g., EN is
2.27 in Spanish and 1.13 in English.

Note: These bigrams were calculated
from a large set of news stories.
Because the word “the” is the most
common word in English speech, that
explains why the two bigrams “th” and
“he” are at the top. If we use only
the vocabulary of English words, the
list will change. The most common
bigram becomes “in”, because of the
many words that start with “in” or
that end in “ing”.

14

Accumulation Pattern

How can we use CS111 to identify language?

Question: How do we build a program
that identifies natural languages?
Answer: We create a “signature” for
each known language by processing
large amounts of text. This signature is
composed of different features and
their frequency distributions. Then, for
new text, we compare its signature to
that of known languages and pick the
one that comes the closest.

Question: What does this problem
have to do with CS 111?
Answer: While we cannot build the
entire program, we can create many of
the features that would be part of the
signature of a language.

Scenario 1
We are given a list of englishwords,
what features can we extract from it?
• The frequency distribution of word

lengths.
• The frequency distribution of character n-

grams.
• The frequency distribution of words

starting with a particular letter.
and many more.

15

Accumulation Pattern

English word length distribution

Problem: Given the dictionary of all
English words, what is the distribution of
words by length?

Solution 1 (requires two separate loops)
1. Iterate over the list of words to find the

length of each word and store it into a new
list. [Accumulation in a list via a
mapping operation.]

2. Iterate over the list of lengths and store it
into a dictionary to keep track of the
number of times we encounter each length.
[Accumulation via a dictionary.]

Solution 2 (requires one loop)
1. Iterate over the list of words to find the length

of each word and immediately store it into a
dictionary. [Accumulation via a dictionary.]

Visualization of English word
length distribution. It resembles a
bell curve (normal distribution)
that is found often in nature.

16

Accumulation Pattern

English word length distribution - Code
Solution 1 (separate accumulation in two steps)
Step 1
lengthsList = [len(word) for word in englishwords]

or
lengthsList = map(len, englishwords) # new function map

Step 2
lengthsDct = {}
for length in lengthsList:

lengthsDct[length] = lengthsDct.get(length, 0) + 1

Solution 2 (one single loop accumulating into the dictionary)

lengthsDct2 = {}
for word in englishwords:

length = len(word)
lengthsDct2[length] = lengthsDct2.get(length, 0) + 1

17

An aside: Fun with statistics

In Statistics, it is common to describe a
dataset (e.g., the list of the lengths of all
English words) in terms of descriptive
statistics: the mean, the median, the mode
(the value that occurs the most), the
variance, the standard deviation, etc. All
these statistics can be calculated with the
operations we have been learning.

• The mean is the sum of all list elements divided by the
length of the list. (sum =>accumulation to a number)

• The median is the middle element of a sorted list.
• The mode is the most frequent element (i.e., the max

value from the frequency dictionary.)
• The variance is the sum of the squares of the difference

of each item to the mean.
• The standard deviation is the square of the variance.

Try it out
Using the lengthsList and
lengthsDct from the
previous slide, you can practice
calculating these statistics with
Python code.
You should find that both the
median and the mode are 8.

Accumulation Pattern 18

Building character n-grams

Unigrams:

Accumulation Pattern

word = 'boston'
list(word)

Bigrams: 'bo', 'os', 'st', 'to', 'on'

'b', 'o', 's', 't', 'o', 'n'

["".join(pair) for pair in zip(word, word[1:])]

b o s t o
o s t o n

Trigrams: 'bos', 'ost', 'sto', 'ton'

["".join(trple) for trple in zip(word, word[1:],word[2:])]

Concepts in this slide:
The function zip can be
used with strings and
returns a list of tuples.

19

def createBigramFrequency()
"""Create and return the bigram frequency distribution of
all words in ‘englishwords’.
"""
bigramsDct = {} # accumulator dictionary

for word in englishwords:
bigramsList = bigrams(word) # create ngrams as a list

add new bigrams or update counts of existing ones
for ngram in bigramsList:

bigramsDct[ngram] = bigramsDct.get(ngram, 0) + 1

return bigramsDct

The bigram frequency
distribution

Accumulation Pattern

def bigrams(word):
"""Given a word return a list of its bigrams."""
return ["".join(pair) for pair in zip(word,

word[1:])]

Concepts in this slide:
Two functions to build the
bigram frequency
distribution.

20

N-gram frequency distributions

Accumulation Pattern

Concepts in this slide:
How to avoid multiple
iterations by creating
helper functions?

• There are 66230 words in
englishwords. We want to
avoid iterating over them too
many times to create the n-gram
distributions we need.

• We can create three n-gram
distributions in one single loop.

• Imagine we have three functions:
unigrams, bigrams,
trigrams that contain the code
in slide 19, respectively.

• Imagine a function
storeNgrams that takes a list
of n-grams and a dictionary and
adds the n-grams to the
dictionary with their frequency
as the key.

unigramsDct = {}
bigramsDct = {}
trigramsDct = {}

for word in englishwords:
create ngrams
ngrams1 = unigrams(word)
ngrams2 = bigrams(word)
ngrams3 = trigrams(word)

store ngrams in freq dicts
storeNgrams(ngrams1, unigramsDct)
storeNgrams(ngrams2, bigramsDct)
storeNgrams(ngrams3, trigramsDct)

Question
Can you hypothesize why the function
storeNgrams doesn’t return a value?

21

Mutating Dictionaries
via aliasing

Accumulation Pattern

Concepts in this slide:
A dictionary can be
mutated via aliasing.

def storeNgrams(ngramsList, ngramsDict):
"""Given a list of items and a dictionary,
update the counts of the dictionary keys.
"""
for ngram in ngramsList:

ngramsDict[ngram] = ngramsDict.get(ngram, 0) + 1

storeNgrams(ngrams1, unigramsDct)

ngramsList ngramsDict

1

1

1

storeNgrams(ngrams2, bigramsDct)

ngramsList ngramsDict

storeNgrams(ngrams3, trigramsDct)

ngramsList ngramsDict

unigramsDct

bigramsDct

trigramsDct

'b'

'bo'

'bos'

Function Call Frames

22

Analyzing the Results

Accumulation Pattern

• Predict what will be the max lengths for the unigramsDct, bigramsDct,

and trigramsDct: ____, _____, _____

• Do you expect that all dictionaries will have that max length? Explain.

• Predict the top 3 unigrams, top 3 bigrams, and top 3 unigrams.

• How to write a function sortItemsInFreqDict that given a frequency

dictionary will return the sorted list (in descending order) of its items, based

on the value of each (key/value) item?

• Which will be more frequent (have the highest values): the top unigrams, the

top bigrams, or the top trigrams?

23

from string import ascii_lowercase as lowercase
'abcdefghijklmnopqrstuvwxyz'

create the dict with unigrams as keys and empty dict as values
bigramsByFirstLetter = {char: {} for char in lowercase}

for bigram in bigramsDct:
unigram = bigram[0]
assign the second level of keys
bigramsByFirstLetter[unigram][bigram] = bigramsDct[bigram]

Accumulating in a dictionary
of dictionaries

Accumulation Pattern

Problem: How can we create a dictionary that has
two level of keys? In the first level, each key is a
unigram, in the second level the keys are bigrams that
start with the unigram. [See example on the right.]

{'a': {'aa': 19,
'ab': 1665,
'ac': 2387,
'ad': 1685,
...},

'b': {'ba': 1431,
'bb': 417,
'bc': 25,
'bd': 35,
...},

...
}

Solution 1: Assume we already have bigramsDict:

24

Accumulating in a dictionary
of dictionaries [2]

Accumulation Pattern

Solution 2: We don’t have bigrams, we create them as we iterate over the list of words.
from string import ascii_lowercase as lowercase
'abcdefghijklmnopqrstuvwxyz'

create the dict with unigrams as keys and empty dict as values
bigramsByFirstLetter = {char: {} for char in lowercase}

for word in englishwords:
create list of bigrams from word
bigramsLst = bigrams(word)
iterate over bigrams
for bigram in bigramsLst:

unigram = bigram[0]
access the nested bigram dict for easy reference
bigramsDct = bigramsByFirstLetter[unigram]
increase frequency counter
bigramsDct[bigram] = biagramsDct.get(bigram, 0) + 1

25

Accumulating in a dictionary
of lists.

Accumulation Pattern

{'ed': ['abandoned',
'abased',
'abashed',
'abated',
...],

'ly': ['abjectly',
'ably',
'abnormally',
'abominably’,
...],

'es': ['abacuses',
'abases',
'abashes',
'abates',
...],

...
}

Problem: Group words from englishwords based
on their ending: words ending with ‘ed’, ‘ly’, ‘es’, etc.

Solution Algorithm:
1. Create an empty dictionary
2. Iterate over words and get the ending of each

word.
3. Check to see if the key/value for ending is

already in the dictionary using the method get
with the default value an empty list.

4. Append the word to the list associated with its
ending.

wordsByEnding = {}
for word in englishwords:

ending = word[-2:]
wordsByEnding[ending] = wordsByEnding.get(ending, [])
wordsByEnding[ending].append(word)

26

Summary
1. Lists and dictionaries are powerful data structures that are used routinely to perform

complex data analysis tasks such as transforming data from one form to another.

2. Accumulation is a very common pattern in problem solving: we accumulate frequencies
(counts) as we encounter new data; or we organize data as nested dictionaries of
dictionaries or dictionaries of lists.

3. When we need to accumulate into nested structures, first always draw a picture of what
the structure would look like, in order to visualize what needs to be created through code.

4. Dictionaries are mutable and they can be changed via aliasing (two different variables
pointing to the same dictionary object).

5. The nested structures would need double subscripting operations (e.g., see last statement
in slide 16-16). If this is conceptually difficult, you can store the inner structure into a
temporary variable and work with that instead. Because of aliasing, this temporary variable
will be directly mutating the entire dictionary. [See second from last statement in slide 19.]

6. Use a dictionary comprehension statement whenever you need to create a dictionary of
dictionaries or a dictionary of lists in the case when the keys of the outer dictionary are
known.

Accumulation Pattern 27

