
CS111 Computer Programming

Department of Computer Science
Wellesley College

Introduction to the Python
language

2-2

Canopy helps you edit and execute
Python programs

2-3

Jupyter notebooks for hands-on activities
E.g.: lecture-02.ipynb for intro to Python

Python Intro Overview [Slide from Tuesday]

o  Values: 10 (integer),
 3.1415 (decimal number or float),
 'wellesley' (text or string)

o  Types: numbers and text: int, float, str
 type(10)

 type('wellesley')

o  Operators: + - * / % =

o  Built-in functions: max, min, len, int, float,
str, round, print, raw_input

o  Expressions: (they always produce a value as a result)
 len('abc') * 'abc' + 'def'

 2-4

Knowing the type of a
value allows us to choose
the right operator when
creating expressions.

*

*

In Python 2.7, print is actually not a function and is handled specially,
but for simplicity we often treat it like a function.

2-5

Simple Expressions:
Python as calculator

1+2
3*4
3 * 4 # Spaces don't matter
3.5 * 2.0 # Floating point (decimal) operations
2 + 3 * 4 # Precedence
(2 + 3) * 4 # Overriding precedence with parantheses
11 / 4 # Integer division
11.0 / 4.0 # Floating point (decimal) division
11 / 4.0 # Floating point (decimal) division
11 % 4 # Integer remainder

3
12
12
7.0
14
20
2
2.75
2.75
3

Input expressions
In [...] Output Values

Out […]

Concepts in this slide:
numerical values,
math operators,
expressions.

Strings and concatenation

"CS111" # Double quotes
'rocks!' # Single quotes
'CS111 ' + 'rocks!' # Concatenation
'111' + 5 # Type error
'111' + '5' # Concatenation
111 + 5 # Integer sum
'111' * 5 # Repeated concatenation

'CS111'
'rocks!'
'CS111 rocks!’
TypeError
'1115'
116
'111111111111111'

A string is just a sequence of characters that we write between a pair of double
quotes or a pair of single quotes.

In [...] Out […]

2-6

Concepts in this slide:
string values,

string operators.

Variables

fav = 17
fav
fav + fav
lucky = 8
fav + lucky
aSum = fav + lucky
aSum * aSum
fav = 12
fav = fav - lucky
name = 'CS111'
name * fav

assignment statement has no output

17
34

25

625

'CS111CS111CS111CS111'

A variable names a value that we want to use several times in a program. An assignment
statement binds a name to a value, declaring in this way the new variable. A suitable
model to think of a variable is that of a box that has a label and a value stored inside it.
Note: The symbol = is pronounced “gets” not “equals”!

 In [...] Out […]

fav 17

lucky 8

a_sum 25

name ‘CS111’

12 4

2-7

Concepts in this slide:
variables,

assignment statement,

model.

Model: Variable as a Box

o  Variables are names we make up (but,
there are rules for creating these names)

o  A variable name should appear for the
first time in an assignment statement.

o  A value is stored in a “box”.
o  The variable “labels” the box.
o  When a variable is used in expressions,

we lookup for the “box” with that name
and read its value.

o  We can reassign a (new) value to a box.
o  If we use a name in an expression

without using it in an assignment first,
we get a NameError.

1-8

fav = 17 # assign

fav + 3 # lookup

lookup and reassign
fav = fav + 3

17 fav

Concepts in this slide:
variables,

assignment statement,

model,

NameError

Built-in functions:
max and min

min(7, 3)
max(7, 3)
min(7,3,2,9) # can take any num. of arguments
smallest = min(-5, 2)
largest = max(-3, -10)
max(smallest, largest, -1)

3
7
2

-1

Python has many built-in functions, we don’t need to define them, we just use them.
Their names are shown in a green color in Canopy. Variable names are black.

In [...] Out […]

The inputs to a function are called its arguments and the function is said to be called
on its arguments. In Python, the arguments in a function call are delimited by
parentheses and separated by commas.

smallest gets -5

largest gets -3

2-9

Concepts in this slide:
built-in functions,

arguments,

function calls.

Built-in functions: type

type(111)
type(4.0)
type('CS111')
type('111')
type(7/4)
type(7.0/4.0)
type(7.0/4)
type(max(7, 3))
x = min(7, 3)
type(x)
phrase = 'CS111' + 'rocks!'
type(phrase)
type(type(111))

int
float
str
str
int
float
float
int

int

str
type

In [...] Out […]

Each Python value has a type. It can be queried with the
built-in type function. Types are special kinds of values (not strings). Knowing the type
of a value is important when writing expressions containing the value.

2-10

Concepts in this slide:
types,

the function type.

Built-in functions: len

len('CS111')
len('CS111 rocks!')
len('com' + 'puter')
course = 'computer programming'
len(course)
len(111) # TypeError

5
12
8

20

When applied to a string, the built-in len function returns the
number of characters in the string. This function will throw a TypeError if
used with non-string values.

In [...] Out […]

2-11

Concepts in this slide:
length of a string,

the function len,

TypeError
 Built-in functions: str

str('CS111')
str(17)
str(4.0)
'CS' + 111
'CS' + str(111)
len(str(111))
len(str(min(17, 3)))
nameLen = len('CS' + str(max(110, 111)))
str(nameLen)

'CS111'
'17'
'4.0’
 TypeError
'CS111'
3
1

'5'

The str built-in function returns a string representation of its argument. It is
used to create string values from int-s and float-s to use in expressions with other
string values.

In [...] Out […]

2-12

Concepts in this slide:

the function str,

complex expressions.

Example of a complex expression.
First, max is called, then str, then +,
then the function len.

Built-in functions: int

int('42')
int('-273')
123 + '42'
123 + int('42')
int('3.141')
int('five')
int(3.141)
int(98.6)
int(-2.978)
int(42)

42
-273
TypeError
165
ValueError
ValueError
3
98
-2
42

When given a string that’s a sequence of digits, optionally preceded
by +/-, int returns the corresponding integer.

When given a floating point number, int truncates it toward zero.

When given an integer, int returns that integer.
 In [...] Out […]

2-13

Concepts in this slide:

the function int,

TypeError,

ValueError.

Built-in functions: float

float('3.141')
float('-273.15')
float('3')
float('3.1.4')
float('pi')
float(42)
float(98.6)

3.141
-273.15
3.0
ValueError
ValueError
42.0
98.6

When given a string that’s a sequence of digits, optionally preceded
by +/-, and optionally including one decimal point, float returns the
corresponding floating point number.

When given an integer, float converts it to floating point number.

When given a floating point number, float returns that number.
 In [...] Out […]

2-14

Concepts in this slide:

the function float,

ValueError (two different
kinds)

Oddities of floating point numbers

2.1 – 2.0
2.2 – 2.0
2.3 – 2.0
1.3 – 1.0
100.3 - 100.0
10.0/3.0
1.414*(3.14159/1.414)

0.10000000000000009
0.20000000000000018
0.2999999999999998
0.30000000000000004
0.29999999999999716
3.3333333333333335
3.1415900000000003

In computer languages, floating point numbers (numbers with decimal points)
don’t always behave like you might expect from mathematics. This is a
consequence of their fixed-sized internal representations, which permit only
approximations in many cases.

In [...] Out […]

2-15

Built-in functions: round

round(3.14156)
round(98.6)
round(-98.6)
round(3.5)
round(4.5)
round(2.718, 2)
round(2.718, 1)
round(2.718, 0)
round(1.3 - 1.0, 1) # compare prev. slide
round(2.3 - 2.0, 1) # compare prev. slide

3.0
99.0
-99.0
4.0
5.0
2.72
2.7
3.0
0.3
0.3

When given one numeric argument, round returns a floating point version of
the integer it’s closest to.

When given two arguments (a numeric argument and an integer number of
decimal places), round returns the result of rounding the first argument to the
number of places specified by the second.

In [...] Out […]

2-16

Concepts in this slide:

the function round,

function call with varying
number of arguments.

Built-in functions: print

print(7)
print('CS111')
print('CS' + 111)
print('CS' + str(111))
print(len(str('CS111')) * min(17,3))
college = 'Wellesley'
print('I go to ' + college)
dollars = 10
print('The movie costs '
 + str(dollars) + ' dollars. '
print 1+2, 6*7, 'foo' + 'bar'

7
CS111
TypeError
CS111
15

I go to Wellesley

The movie costs 10
dollars.
3 42 foobar

Input statements
In [...]

Characters displayed in
console (*not* the output
value of the expression!)

print displays a character-based representation of its argument(s)
on the screen. It does not evaluate to a result value.

•  As shown in the last example, in Python 2.7, print is actually not a function, and it can display
multiple values on the same line using comma-separated expressions without parentheses. 2-17

Concepts in this slide:

the function print, an
alternative way of using

print (last line).

*

Expressions vs. Statements
They always produce a value:

10
10 * 20 – 100/25
max(10, 20)
int("100") + 200
fav
fav + 3
"pie" + " in the sky”

Expressions are composed of values,
operators, variables, functions, and any
combination of them.

They perform an action (that can
be visible, invisible, or both):

print(10)
age = 19
paper = Canvas(400, 550,
 'yellow')
paper.add(head)

Statements may contain expressions,
which are evaluated before the action is
performed.

print('She is ' + str(age)
+ ' years old.')

2-18

Concepts in this slide:

Expressions, statements

Expression values vs. print

Notice the field Out[]
when the input is a function
call, expression, or variable.

The function print
doesn’t output a value, it
only displays the result on
the screen.

2-19

Concepts in this slide:

the function print,

print is different from
other built-in functions.

More built-in functions:
raw_input

In [1]: raw_input('Enter your name: ')
Enter your name: Phil E. Buster
Out [1]: 'Phil E. Buster'

In [2]: age = raw_input('Enter your age: ')
Enter a number: 19

In [3]: age
Out [3]: '19'

In [4]: age + 4.0
Out [4]: TypeError

In [5]: age = float(raw_input('Enter your age: '))
Enter a number: 19
In [6]: age + 4.0
Out [6]: 23.0

raw_input displays its argument on the screen and waits for the
user to input text, followed by Enter/Return. It returns the entered value as a string.

Brown text is prompt.

Magenta text is entered by user.

Variable assignment. No output.

Example of “nesting” two functions

Tried to add a string and a float

2-20

Return value from raw_input is a
STRING. Need to be converted to a
numerical type as needed.

Concepts in this slide:

the function raw_input,

converting from string.

Notice the
vertical bar that
marks the 80th
character. Don’t
write code
beyond that line.

2-21

The script file nameage.py

Code Styling Advice

1.  Give meaningful names to variables.
2.  Use space around operators (e.g, =, +)
3.  Use comments at the top of file
4.  Organize code in “blocks” based on its meaning and provide comments.
5.  Use space between blocks to improve readability.

Concepts in this slide:

the 80-character limit,

coding advice.
 Error messages in Python

2-22

Type Errors

'111' + 5 TypeError: cannot concatenate 'str' and 'int' objects

len(111) TypeError: object of type 'int' has no len()

 5 + '111' TypeError: unsupported operand type(s) for +: 'int' and 'str'

Value Errors

int('3.142') ValueError: invalid literal for int() with base 10: '3.142'

float('pi') ValueError: could not convert string to float: pi

Name Errors

CS + '111' NameError: name 'CS' is not defined

Syntax Errors

2ndValue = 25

 SyntaxError: invalid syntax
^

For syntax errors, the arrow ^ doesn’t always point
exactly to where the error is. In this case, the issue is
the number 2 that starts the variable name. It’s not
allowed to start a variable name with a number.

Concepts in this slide:

Error types,

Error messages.

Test your knowledge

2-23

1.  Create simple expressions that combine values of different types and
math operators.

2.  Which operators can be used with string values? Give examples of
expressions involving them. What happens when you use other operators?

3.  Write a few assignment statements, using as assigned values either
literals or expressions. Experiment with different variable names that
start with different characters to learn what is allowed and what not.

4.  Perform different function calls of the built-in functions: max, min, len,
type, int, str, float, round.

5.  Create complex expressions that combine variables, function calls,
operators, and literal values.

6.  Use the function print to display the result of expressions involving string
and numerical values.

7.  Write simple examples that use raw_input to collect values from a user and
use them in simple expressions. Remember to convert numerical values.

8.  Create situations that raise different kinds of errors: Type, Value, Name, or
Syntax errors.

