
Java Execution Model Examples

Franklyn Turbak

September 18, 2007

1 Void Methods Without Parameters: StitchWorld

As a first example, we consider the StitchWorld and Stitcher classes on the next page in Fig. 3.
The StitchWorld class is a subclass of BuggleWorld that overrides the runmethod of BuggleWorld.
This run method creates two instances of the Stitcher class, which extends the Buggle class with
five new methods: stitch4, stitch2, stitch, box, and turn180. All these methods are void

methods (i.e., they return no results) that take no parameters.
We can understand what the StitchWorld run method does by carefully drawing a Java Ex-

ecution Model (JEM) diagram (see Fig. 1) for an invocation of the run method. Such a diagram

Figure 1: Initial JEM diagram for the StitchWorld example.

Execution Land

→ SW .run();

Object Land

StitchWorld SW

shows execution frames in Execution Land and objects in Object Land. We assume that run is
invoked on an instance of StitchWorld with object label SW . The StitchWorld instance SW

is a complex object whose state we do not wish to study in detail, so we shall treat it (and draw it)
as a “black box”. The control arrow, → , indicates which statement is currently being executed.

Invoking the run method on SW creates an execution frame (Fig. 2). As always, the this

Figure 2: Invoking run() creates an execution frame.

Execution Land

SW .run();

this SW

→ Stitcher sue = new Stitcher();

sue.setPosition(new Location(4,2));

Stitcher sam = new Stitcher();

sam.setColor(Color.blue);

sue.stitch4();

sam.box();

Object Land

StitchWorld SW

variable of the execution frame is the receiver object — the object on which the method was invoked
— in this case, SW .

1

public class StitchWorld extends BuggleWorld {

public void run () {

Stitcher sue = new Stitcher();

sue.setPosition(new Location(4,2));

Stitcher sam = new Stitcher();

sam.setColor(Color.blue);

sue.stitch4();

sam.box();

}

}

public class Stitcher extends Buggle {

public void stitch4 () {

this.stitch2();

this.stitch2();

}

public void stitch2 () {

this.stitch();

this.stitch();

}

public void stitch () {

this.forward();

this.left();

this.forward();

this.right();

}

public void box () {

this.stitch(); // draw two sides of box

this.turn180(); // turn to draw rest of box

this.stitch(); // draw other two sides of

this.turn180(); // turn to original heading

this.stitch(); // move to opposite corner

}

public void turn180 () {

this.left();

this.left();

}

}

Figure 3: Code for the StitchWorld example.

2

The first statement in the body of the run method is the assignment statement

Stitcher sue = new Stitcher();

Executing this statement takes place in three steps:

1. The variable declaration Stitcher sue creates a new local variable named sue in the execu-
tion frame for run().

2. The instance method invocation new Stitcher() creates and returns a new Stitcher in-
stance, which we shall assume has object label S1 . A Stitcher instance has exactly the
same state variables as a buggle.

3. The object label S1 for the new Stitcher instance is stored in the local variable sue.

The result of these three steps is depicted in Fig. 4.

Figure 4: JEM after executing the first assignment statement in run().

Execution Land

SW .run();

this SW sue S1

Stitcher sue = S1 ;

→ sue.setPosition(new Location(4,2));

Stitcher sam = new Stitcher();

sam.setColor(Color.blue);

sue.stitch4();

sam.box();

Object Land

StitchWorld SW

Stitcher S1

position (1,1)

heading EAST

color red

brushDown? true

To cut down on the clutter in Object Land, we use some notational abbreviations for objects in
Fig. 4. We use (1,1) as an abbreviation for a new Location instance in Object Land (not shown)

whose x and y instance variables both contain the integer 1. Similarly, EAST is an abbreviation

for a unique Direction instance denoting the east direction, and red is an abbreviation for a
distinguished Color instance denoting the red color.

After the execution of the first statement in the run method, the control arrow points to the
second statement:

sue.setPosition(new Location(4,2));

Executing this void method invocation statement takes place in three steps:

1. The receiver expression sue is evaluated. This is a variable reference, whose value is the
contents of the local variable named sue, which is the object labeled S1 .

3

2. The argument expression new Location(4,2) is evaluated. This creates and returns a new
Location instance. As above, we will use the abbreviation (4,2) in place of showing the

Location instance in Object Land.

3. Invoking the setPosition method on S1 with the argument (4,2) changes the position

of S1 to (4,2) .

The result of these three steps is depicted in Fig. 5.

Figure 5: JEM after executing the second statement in the run method.

Execution Land

SW .run();

this SW sue S1

Stitcher sue = S1 ;

S1 .setPosition((4,2));

→ Stitcher sam = new Stitcher();

sam.setColor(Color.blue);

sue.stitch4();

sam.box();

Object Land

StitchWorld SW

Stitcher S1

position (4,2)

heading EAST

color red

brushDown? true

Control now points to the third statement of the run method:

Stitcher sam = new Stitcher();

Executing this assignment statement (1) creates a new local variable named sam; (2) creates an-
otherStitcher instance, which we shall assume has object label S2 ; and (3) stores S2 the local
variable named sam. The result of these steps is shown in Fig. 6.

Now control points to the fourth statement of the run method:

sam.setColor(Color.blue);

Executing this void method invocation statement (1) evaluates the receiver expression sam to S2 ;

(2) evaluates the argument expression Color.blue to the object reference blue for an pre-existing

Color instance in Object Land; and (3) changes the color of S2 to blue. The result of these steps
is shown in Fig. 7.

Next comes the execution of the fifth statement in the run method, s1.stitch4();. This is an
invocation of a user-defined method, stitch4, on the receiver expression s1, whose value is S1 .

Such an invocation creates a new execution frame whose this variable contains the receiver, S1

(Fig. 8). Since Object Land remains unchanged from Fig. 7), we do not show it.

4

Figure 6: JEM after executing the third statement of the run method.

Execution Land

SW .run();

this SW sue S1 sam S2

Stitcher sue = S1 ;

S1 .setPosition((4,2));

Stitcher sam = S2 ;

→ sam.setColor(Color.blue);

sue.stitch4();

sam.box();

Object Land

StitchWorld SW

Stitcher S1

position (4,2)

heading EAST

color red

brushDown? true

Stitcher S2

position (1,1)

heading EAST

color red

brushDown? true

Figure 7: JEM after executing the fourth statement of the run method.

Execution Land

SW .run();

this SW sue S1 sam S2

Stitcher sue = S1 ;

S1 .setPosition((4,2));

Stitcher sam = S2 ;

S2 .setColor(blue);

→ sue.stitch4();

sam.box();

Object Land

StitchWorld SW

Stitcher S1

position (4,2)

heading EAST

color red

brushDown? true

Stitcher S2

position (1,1)

heading EAST

color blue

brushDown? true

5

Figure 8: Executing the fifth statement of the run method creates an execution frame for stitch4.

Execution Land

SW .run();

this SW sue S1 sam S2

Stitcher sue = S1 ;

S1 .setPosition((4,2));

Stitcher sam = S2 ;

S2 .setColor(blue);

S1 .stitch4();

sam.box();

this S1

→ this.stitch2();

this.stitch2();

Executing the first statement in the body of the stitch4 method causes the stitch2 method
to be invoked on S1 , which creates another execution frame (Fig. 9).

Figure 9: Executing the first statement of stitch4 creates an execution frame for stitch2.

Execution Land

SW .run();

this SW sue S1 sam S2

Stitcher sue = S1 ;

S1 .setPosition((4,2));

Stitcher sam = S2 ;

S2 .setColor(blue);

S1 .stitch4();

sam.box();

this S1

S1 .stitch2();

this.stitch2();

this S1

→ this.stitch();

this.stitch();

Executing the first statement in the body of the stitch2 method causes the stitch method to
be invoked on S1 , which creates yet another execution frame (Fig. 10). In the Execution Land of

Fig. 10 we omit the initial call to SW .run() in order to fit the rest of the execution frames.

Figure 10: Executing the first statement of stitch2 creates an execution frame for stitch.

Execution Land

this SW sue S1 sam S2

Stitcher sue = S1 ;

S1 .setPosition((4,2));

Stitcher sam = S2 ;

S2 .setColor(blue);

S1 .stitch4();

sam.box();

this S1

S1 .stitch2();

this.stitch2();

this S1

S1 .stitch();

this.stitch();

this S1

→ this.forward();

this.left();

this.forward();

this.right();

Executing the four instance method invocations in the body of stitch changes Execution Land
and Object Land as shown in Fig. 11. No execution frames have been drawn for the instance
method invocations of forward, left, and right, because they are considered “primitive”; we are
not going to examine the details of how they work.

6

Figure 11: JEM after completing the first invocation of stitch.

Execution Land

this SW sue S1 sam S2

Stitcher sue = S1 ;

S1 .setPosition((4,2));

Stitcher sam = S2 ;

S2 .setColor(blue);

S1 .stitch4();

sam.box();

this S1

S1 .stitch2();

this.stitch2();

this S1

S1 .stitch();

→ this.stitch();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

Object Land

StitchWorld SW

Stitcher S1

position (5,3)

heading EAST

color red

brushDown? true

Stitcher S2

position (1,1)

heading EAST

color blue

brushDown? true

After executing all four statements in the execution frame for the first stitch invocation within
stitch2, the execution of that invocation is complete, and the control arrow proceeds to execute
the second invocation of stitch within stitch2. In reality, the execution frame for the first stitch
invocation disappears at this point, but we will continue to display it to show the history of the
computation.

Executing the second invocation of stitch within stitch2 creates a second execution frame
for stitch (Fig. 12). Performing the four statements in the second stitch execution frame yields

Figure 12: The second invocation of stitch in stitch2 creates a second execution frame for
stitch.

Execution Land

this SW sue S1 sam S2

Stitcher sue = S1 ;

S1 .setPosition((4,2));

Stitcher sam = S2 ;

S2 .setColor(blue);

S1 .stitch4();

sam.box();

this S1

S1 .stitch2();

this.stitch2();

this S1

S1 .stitch();

S1 .stitch();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

this S1

→ this.forward();

this.left();

this.forward();

this.right();

the JEM diagram in (Fig. 13).

7

Figure 13: JEM after completing the second invocation of stitch.
Execution Land

this SW sue S1 sam S2

Stitcher sue = S1 ;

S1 .setPosition((4,2));

Stitcher sam = S2 ;

S2 .setColor(blue);

S1 .stitch4();

sam.box();

this S1

S1 .stitch2();

→ this.stitch2();

this S1

S1 .stitch();

S1 .stitch();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

Object Land

StitchWorld SW

Stitcher S1

position (6,4)

heading EAST

color red

brushDown? true

Stitcher S2

position (1,1)

heading EAST

color blue

brushDown? true

Since the first invocation of stitch2 is now complete, control proceeds to the second invocation
of stitch2. Just as in the first invocation of stitch2, the second invocation will cause the creation
of three new execution frames in the JEM. We shall not show the intermediate steps, just the final
state after the execution of the second invocation of stitch2 (Fig. 14).

The execution of sam.box creates six new execution frames, which are shown in Fig. 15 in the
final picture of Execution Land for the StichWorld example. The final state of Object Land for
this example is shown in Fig. 16.

Even though the StitchWorldmethods are very simple (they take no parameters and return no
results), they illustrate some important aspects of JEM diagrams and of programming in general:

• As drawn above, execution frames for buggle programs are arranged in the shape of a right-
ward growing tree. The root of the tree is the execution frame for the run method. Each
execution frame has a number of children frames for the invocations of instance methods
in the statement section of the frame. A frame is a leaf if it has no children frames. In the
above examples, the frames for stitch and turn180 are leaves of the tree.

• Certain method invocations (e.g., forward, left, and right) are considered primitive — we
do not want or need to look at the details of how they work. It should be clear from the
above diagrams that if we wanted to understand every single aspect of even a fairly simple
buggle program, we would quickly be mired in a morass of details.

• The fact that a single method (such as stitch, stich2, or turn180) can be invoked multiple
times in the same program is a source of great power. Rather than directly writing the

8

Figure 14: JEM after completing the second invocation of stitch2.

Execution Land

this SW sue S1 sam S2

Stitcher sue = S1 ;

S1 .setPosition((4,2));

Stitcher sam = S2 ;

S2 .setColor(blue);

S1 .stitch4();

→ sam.box();

this S1

S1 .stitch2();

S1 .stitch2();

this S1

S1 .stitch();

S1 .stitch();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

this S1

S1 .stitch();

S1 .stitch();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

Object Land

StitchWorld SW

Stitcher S1

position (8,6)

heading EAST

color red

brushDown? true

Stitcher S2

position (1,1)

heading EAST

color blue

brushDown? true

9

Figure 15: Final state of Execution Land
in the StitchWorld example.

Execution Land

this SW sue S1 sam S2

Stitcher sue = S1 ;

S1 .setPosition((4,2));

Stitcher sam = S2 ;

S2 .setColor(blue);

S1 .stitch4();

S2 .box();

this S1

S1 .stitch2();

S1 .stitch2();

this S1

S1 .stitch();

S1 .stitch();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

this S1

S1 .stitch();

S1 .stitch();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

this S1

S1 .forward();

S1 .left();

S1 .forward();

S1 .right();

this S2

S2 .stitch();

S2 .turn180();

S2 .stitch();

S2 .turn180();

S2 .stitch();

this S2

S2 .forward();

S2 .left();

S2 .forward();

S2 .right();

this S2

S2 .left();

S2 .left();

this S2

S2 .forward();

S2 .left();

S2 .forward();

S2 .right();

this S2

S2 .left();

S2 .left();

this S2

S2 .forward();

S2 .left();

S2 .forward();

S2 .right();

10

Figure 16: Final state of Object Land in the StitchWorld example.

Object Land

StitchWorld SW

Stitcher S1

position (8,6)

heading EAST

color red

brushDown? true

Stitcher S2

position (2,2)

heading EAST

color blue

brushDown? true

sequence of statements in the leaf frames, we can instead write a few method invocations
that “expand” into those statements. For instance, in the above example, each of stitch4()
and box() expands into 16 primitive statements in the leaf frames. In this way, collections of
methods give the programmer a way to “amplify” the power of a statement; a single statement
can denote a complex sequence of actions.

• The stitch2 and stitch4 methods use a successive doubling idiom that is a simple but
effective way to get a large number of leaf frames with just a few methods. It is easy to use
this idiom to define 8, 16, 32, 64, etc. calls to stitch. We shall see this idiom many times in
the course.

11

2 Void Methods With Parameters: LineBuggleWorld

Now we consider a buggle program in which the methods take parameters (but still do not return
any results). The code for LineBuggleWorld is presented in Fig. 17. We shall use the Java
Execution Model to understand this example.

public class LineBuggleWorld extends BuggleWorld {

public void run () {

LineBuggle liam = new LineBuggle();

liam.corner(Color.blue, Color.green, 4);

}

}

public class LineBuggle extends Buggle {

public void corner (Color c1, Color c2, int n) {

this.line(c1, n+1);

this.left();

this.line(c2, n-1);

}

public void line (Color col, int len) {

this.setColor(col);

this.forward(len);

}

}

Figure 17: Code for the LineBuggle example.

We begin with the method invocation LBW .run(), where LBW is assumed to be an instance
of the LineBuggleWorld class in Object Land (Fig. 18).

Figure 18: Initial JEM diagram for the LineBuggleWorld example.

Execution Land

→ LBW .run();

Object Land

StitchWorld LBW

Invoking the run instance method on LBW creates a frame (Fig. 19).

Figure 19: Creation of the execution frame for run.

Execution Land

LBW .run();

this LBW

→ LineBuggle liam = new LineBuggle();

liam.corner(Color.blue, Color.green, 4);

Object Land

StitchWorld LBW

Executing the first statement of the run frame creates a new LineBuggle instance, which we

12

assume has object label LB1 , and stores this in a new local variable named liam (Fig. 20).

Figure 20: A LineBuggle named liam is born.

Execution Land

LBW .run();

this LBW

LineBuggle liam = LB1 ;

→ liam.corner(Color.blue, Color.green, 4);

Object Land

StitchWorld LBW

LineBuggle LB1

position (1,1)

heading EAST

color red

brushDown? true

The second statement in the body of run is an instance method invocation. Before the method
can be invoked, it is necessary to (1) evaluate the receiver expression (in this case, the variable
reference liam) and (2) evaluate all the argument expressions (in this case, the class constants
Color.blue and Color.green and the integer literal 4). These evaluations yield the statement:

LB1 .corner(blue , green , 4)

Once the receiver and argument expressions have been evaluated, the execution frame for the
invocation of corner can be created. In addition to the this variable, which always contains the
value of the receiver expression, the frame contains one variable for each formal parameter in the
method declaration (in this case, c1, c2, and n). These variables are filled with the respective
values of the argument expressions, as shown in Fig. 21.

Figure 21: Creation of the execution frame for the corner invocation.

Execution Land

LBW .run();

this LBW liam LB1

LineBuggle liam = LB1 ;

LB1 .corner(blue ,

green ,

4);

this LB1 c1 blue

c2 green n 4

→ this.line(c1, n+1);

this.left();

this.line(c2, n-1);

The first statement in the body of corner is an invocation of the line instance method. First,
we need to evaluate the receiver expression, this, whose value is LB1 . Next, we evaluate the

argument expressions c1 (whose value is blue) and n+1 (whose value is 5). Finally, we perform

the invocation LB1 .line(blue ,5) by creating a new execution frame (Fig. 22). In addition to
the this variable, the new frame has one variable for each of the formal parameters, col and len:

13

Figure 22: Creation of the execution frame for the first line invocation.

Execution Land

LBW .run();

this LBW liam LB1

LineBuggle liam = LB1 ;

LB1 .corner(blue ,

green ,

4);

this LB1 c1 blue

c2 green n 4

LB1 .line(blue , 5);

this.left();

this.line(c2, n-1);

this LB1

col blue

len 5

→ this.setColor(col);

this.forward(len);

Executing the two statements in the body of the line method changes Execution Land and
Object Land as shown in Fig. 23.

Figure 23: Creation of the execution frame for the first line invocation.

Execution Land

LBW .run();

this LBW liam LB1

LineBuggle liam = LB1 ;

LB1 .corner(blue ,

green ,

4);

this LB1 c1 blue

c2 green n 4

LB1 .line(blue , 5);

→ this.left();

this.line(c2, n-1);

this LB1

col blue

len 5

LB1 .setColor(blue);

LB1 .forward(5);

Object Land

StitchWorld LBW

LineBuggle LB1

position (6,1)

heading EAST

color blue

brushDown? true

Next the left method invocation in corner is executed, yielding the JEM in Fig. 24.

Finally, the third statement of the corner method, this.line(c2, n-1), is executed. To
execute this instance method invocation, it is first necessary to evaluate the receiver expression
(the variable reference this) and the argument expressions (the variable reference c2 and the
binary application n-1). The values of these expressions are LB1 , green , and 3, respectively.

The invocation LB1 .line(green ,3) is performed by creating a new execution frame (Fig. 25).

Executing the two statements in the body of the second line frame gives the final Execution
Land and Object Land for this example (Fig. 26).

The LineBuggleWorld example illustrates the key important fact about methods with parame-
ters: the variables named by the parameters enable the same method body to do different things for
different method invocations. Consider the linemethod in the above example. The two invocations

14

Figure 24: JEM after executing the left within corner.

Execution Land

LBW .run();

this LBW liam LB1

LineBuggle liam = LB1 ;

LB1 .corner(blue ,

green ,

4);

this LB1 c1 blue

c2 green n 4

LB1 .line(blue , 5);

LB1 .left();

→ this.line(c2, n-1);

this LB1

col blue

len 5

LB1 .setColor(blue);

LB1 .forward(5);

Object Land

StitchWorld LBW

LineBuggle LB1

position (6,1)

heading NORTH

color blue

brushDown? true

Figure 25: Creation of the execution frame for the second line invocation.

Execution Land

LBW .run();

this LBW liam LB1

LineBuggle liam = LB1 ;

LB1 .corner(blue ,

green ,

4);

this LB1 c1 blue

c2 green n 4

LB1 .line(blue , 5);

LB1 .left();

→ this.line(c2, n-1);

this LB1

col blue

len 5

LB1 .setColor(blue);

LB1 .forward(5);

this LB1

col green

len 3

→ this.setColor(col);

this.forward(len);

15

Figure 26: The final JEM diagram for the LineBuggleWorld example.

Execution Land

LBW .run();

this LBW liam LB1

LineBuggle liam = LB1 ;

LB1 .corner(blue ,

green ,

4);

this LB1 c1 blue

c2 green n 4

LB1 .line(blue , 5);

LB1 .left();

LB1 .line(green , 3);

this LB1

col blue

len 5

LB1 .setColor(blue);

LB1 .forward(5);

this LB1

col green

len 3

LB1 .setColor(green);

LB1 .forward(3);

Object Land

StitchWorld LBW

LineBuggle LB1

position (6,4)

heading NORTH

color green

brushDown? true

execute exactly the same two statements:

this.setColor(col);

this.forward(len);

Yet, the two invocations have different behaviors. Why? The only difference is values stored in the
variables named by the parameters. In the first invocation, col denotes blue and len denotes
5, while in the second invocation col denotes green and len denotes 3. Effectively, the method

body acts as a template with “holes” that can be filled in differently for different invocations; the
parameters serve as these holes.

Here are a few notes concerning the above example:

• Note that the color variables (c1, c2, and col) are not written with a Color. in front of them.
The expression Color.c1 would denote the class constant named c1 within the Color class,
and, according to the contract for Color, there isn’t such a constant. The only constants are
actual color names, as in Color.red or Color.blue. So Color.c1 is an error that will be
caught by the Java compiler.

• The execution diagram makes it clear that there are two different variables named col and
two different variables named len — one for each of the two execution frames for line.

16

Although people sometimes get confused by the presence of more than one variable with the
same name, Java does not, because it follows a simple rule: when executing the statements
in an execution frame, all variable names must refer to the variables at the top of that frame.
For instance, each of the line frames can refer to its own this, col, and len variables, but
neither can refer to the this, col, and len variables in the other frame, nor can either refer to
the this, c1, c2, and n variables in the corner frame. In terms of information flow, this means
that if you want a method to use an existing object, you must pass it in as a parameter.1

• Because variable names are completely local, they can be consistently renamed without af-
fecting the computation. For instance, we can rename col and len to be any other two names
we want, as long as they are different and not the special name this. For instance, we could
redefine line to be any of the following:

public void line (Color color, int length) {

this.setColor(color);

this.forward(length);

}

public void line (Color c, int l) {

this.setColor(c);

this.forward(l);

}

public void line (Color foogle, int blarg) {

this.setColor(foogle);

this.forward(blarg);

}

public void line (Color len, int col) {

this.setColor(len);

this.forward(col);

}

public void line (Color c1, int n) {

this.setColor(c1);

this.forward(n);

}

Java will treat all of the above in exactly the same way, modulo changing the names of
variables in the diagrams. This is even true in the last case, where line is “reusing” the same
parameter names used in corner. While human programmers might find this confusing, Java
is not confused, as is illustrated by the corresponding Execution Land for this case (Fig. 27).
Note that there are now three distinct variables named c1 and n, but that this does not change
the computation in any way.

• Ideally, parameter names should serve as comments that indicate the type and purpose of the
parameter. From the point of readability, some choices (such as col/len or color/length)
are better than others. Names like foogle/blarg may seem funny, but are very unhelpful.
Perverse names like len for the color variable and col for the length variable are particularly
confusing for the human programmer.

• Sometimes, new Java programmers try to “set” the values of a method parameter using a
local variable declaration, as shown below:

1This isn’t technically true, since all methods can refer to the same class constants. And we will learn later how

objects can be shared through instance variables. But the intuition that objects are shared by passing them as

parameters is a good one.

17

Figure 27: The final JEM diagram for the LineBuggleWorld example using c1 and n as the
parameter names for the line method.

Execution Land

LBW .run();

this LBW liam LB1

LineBuggle liam = LB1 ;

LB1 .corner(blue ,

green ,

4);

this LB1 c1 blue

c2 green n 4

LB1 .line(blue , 5);

LB1 .left();

LB1 .line(green , 3);

this LB1

c1 blue

n 5

LB1 .setColor(blue);

LB1 .forward(5);

this LB1

c1 green

n 3

LB1 .setColor(green);

LB1 .forward(3);

// An incorrect way to pass arguments to a method

Color col = Color.blue;

int len = 5;

this.line();

The Java Execution Model explains why this does not work. This defines variables named
col and int in the execution frame from which line is invoked, and not in the execution
frame for line itself. In fact, since line expects two arguments and is not passed any, the
Java compiler will complain about the above code.

The above attempt can be repaired as follows:

// A working but not very good way to pass arguments to a method

Color col = Color.blue;

int len = 5;

this.line(col, len);

This actually works, since the values stored in the variables col and len in the current
execution frame will be passed to the execution frame for line. However, this code is clumsy,
and suggests that the programmer does not understand how parameter passing works in Java.

The best way to pass parameters is to put them directly in the argument positions of an
invocation:

// The best way to pass arguments to a method

this.line(Color.blue, 5);

18

