Chapter 1

Big Ideas

This course is an introduction to programming and problem solving. We shall focus on some
“big ideas” of computer science — key themes that are seen again and again throughout the
discipline. While mastering these ideas is clearly important if you are planning to major or
minor in computer science, it is worthwhile to take this course even if you do not plan to
take any other computer science courses. The ideas you will learn here crop up in various
forms in many other disciplines, such as mathematics, natural sciences, engineering, and art.
And the problem solving skills you learn here will help you formulate and solve problems
in any field.

We will use the Java programming language as a tool for exploring the big ideas of
computer science. However, the focus of the course is on the big ideas, and not Java per
se. Indeed, you should be able to transfer what you learn here to programming in most any
programming language. While you will learn a significant amount about programming in
Java, there are many important aspects of practical Java programming that you will not
learn in this course; you will need to take further courses if you wish to learn these.

In the rest of this chapter, we briefly introduce the big ideas covered in this course.

1.1 Computational Recipes

Computer science is not really a science.! Scientists form hypotheses about how the world
works and perform experiments to test these hypotheses. Although there are exceptions,
most computer scientists do not do this. Instead, they design and build computational
artifacts, In this sense, computer scientists are more like engineers or artists.

Computer science does not have much to do with computers. Although computers are
an important tool used by computer scientists to explore computation, they are just a
tool. Computer science is no more about computers than chemistry is about test tubes and
Bunsen burners.

If computer science is not a science and has little to do with computers, then what is
it? The essence of computer science is imperative (“how to”) knowledge, which stands in
contrast to the declarative (“what is”) knowledge on which mathematicians tend to focus.

The view of computer science espoused here was advanced by Hal Abelson and Jerry Sussman in their
introductory MIT course (6.001). To them we owe the insight that computer science is not a science and
has little to do with computers but is really about imperative knowledge and controlling the complexity of
large systems.



2 CHAPTER 1. BIG IDEAS

For example, to a mathematician, the fraction % is a number that, when multiplied by

7, yields 22. To a computer scientest, % implies a process (such as long division) for
determining the digits in the floating point representation 3.142857.

Imperative knowledge is expressed via algorithms, which are computational recipes that
specify how a computational process evolves over time. Algorithms can be encoded as
programs written in formal languages known as programming languages. In this course,
we shall write our algorithms in Java, but they could also be expressed (albeit with many
differences) in almost every other programming language.

A wonderful thing about programs is that they can be executed on a computer, which
automatically manages all the details of carrying out the computational process specified by
the program. But programs also have meaning independent of their ability to be executed
on a computer; they can also be used to communicate “how to” knowledge between people.
As noted by Abelson and Sussman:

A computer language, from this perspective, is a novel formal medium for ex-
pressing ideas about methodology, not just a way to get a computer to perform
operations. Programs are written for people to read, and only incidentally for
machines to execute.

1.2 Problem Solving

Writing a program is a classic problem solving activity. You are given a goal (the program
should have a specified behavior) and a set of materials/tools (the programming language
and its associated libraries) and you try to achieve the goal with the given materials. There
are a number of problem solving techniques that we will study for bridging the gap between
the given materials and the desired goal. While these techniques are particularly applicable
to computer science, they are helpful in any problem solving activity.

We shall study the following techniques:

e Divide/Conquer/Glue

An important strategy for deriving a solution S for a problem P is to divide P into n
subproblems Py, Py, ... P,, conquer (i.e. solve) the subproblems to yield n subsolutions
S1,82,...5,, and glue these subsolutions together to form the whole solution S.

For example, if you want to bake a chocolate turtle cake you need to solve the following
subproblems:

— Find the recipe;
— Make sure you have all the ingredients;

— Follow the recipe to make the cake.

Each of the above subproblems can be decomposed further into subsubproblems.
For instance, to make the cake you need to (1) make two cake layers (2) make a
caramel /pecan filling and (3) make a chocolate frosting. These components are phys-
ically combined to yield the cake.



1.3. CONTROLLING COMPLEXITY: ABSTRACTION AND MODULARITY 3

There are often many different ways to solve a particular subproblem. For instance,
you could buy the cake layers from a store, or bake them from a cake mix, or bake
them from scratch.

Eventually, the problem division process “bottoms out” at problems that are so small
and simple that they can be solved directly. These “leaves” at the ends of the
problem-solving “tree” are called primitives. What seem like primitives to us of-
ten hide problem-solving complexity for others. For instance, if we buy cake layers at
a store, then the problem of baking the cake layers has been pushed off to someone
else.

e Recursion

It is often the case that the suproblems for a problem are just smaller versions of
the whole problem. In this case, the general divide/conquer/glue strategy is called
recursion. Recursion is an incredibly powerful problem solving technique of which we
shall see many examples in this course.

e [teration

A common special case of recursion is when the problem decomposes into a sin-
gle smaller subproblem and there is no glue step. In this case, the general di-
vide/conquer/glue strategy is called iteration. Because this is such a common case,
Programming languages (including Java) have special looping constructs for express-
ing iterations.

e Debugging

Programming is an iterative process, and things almost never go right the first time.
An important part of problem solving is figuring out why things don’t work and fixing
them. Program errors are usually referred to as bugs, and the process of finding and
fixing bugs is called debugging. Programmers often spend more time debugging their
programs than they do writing them in the first place, so it is important to acquire
good debugging skills. Throughout these notes, we will introduce numerous techniques
for finding bugs and for preventing them in the first place.

1.3 Controlling Complexity: Abstraction and Modularity

Computer programs can be very large. For instance, the Windows XP operating system
contains over 40 million lines of code. This is a lot of code! Printing out all the code with
50 lines per page, double-side, on standard printer paper would produce a pile of paper over
130 feet high. If you were to spend 8 hours per day, seven days a week, reading the code
at one line per second, it would take nearly 4 years to read through 40 million lines — and
this doesn’t include any time for actually understanding the code!

Clearly, for programs the size of Windows XP, it is impossible for a single human being
to understand every detail of the program. To create such a large and complex software
artifact, it must be the case that individual programmers can contribute to the project
without understanding every detail of the project. In software engineering (indeed, in any
engineering discipline) this is made possible by techniques for controlling the complexity of
large systems. The two most important techniques are abstraction and modularity:



4 CHAPTER 1. BIG IDEAS

e Abstraction is the principle that idioms should be captured and generalized into “black
box” entities with simple interfaces. Here, black box serves as a metaphor for an
abstraction barrier that separates the users of the device (who should be able to use
the device without understanding how it works) from the implementers of the device
(who must understand the details of how the device works).

Abstraction is ubiquitous in the modern world and we depend on it for functioning
in our day-to-day lives. We are able to use a wide array of machines and devices
(e.g. cars, telephones, stereos, computers) without having to understand the details
of how they work. Supermarkets, department stores, and utilities are purveyors of
abstractions; for the most part, we do not need or want to know how a loaf of bread
is baked, how a piece of clothing is made, or how our electricity, water, and gas are
produced.

e Modularity is the principle that systems should be composed out of reusable mix-and-
match parts. Having a large collection of parts that can be glued together in standard
ways simplifies designing, building, debugging, and extending complex systems. Good
examples of modularity include:

— standard connectors for electronic devices (e.g., power cords, telephone cords,
network cables, bus connectors for computer peripherals);

— construction toys (e.g., LEGO, K’'NEX, TinkerToys);

— mix-and-match color-coordinated clothing.

In this course, we shall see that abstraction and modularity are indispensible for sim-
plifying the process of programming. In particular:

e Capturing computational recipes via Java methods and data abstractions via Java
objects will help us to solve some difficult problems.

e We can leverage the work of other programmers by using libraries of code that they
have written, tested, and debugged. As long as they provide contracts that explain
how to use their libraries, we can incorporate their libraries into our programs without
understaning how they are implemented.

e Java objects and standard data structures like lists and arrays facilitate the construc-
tion of generic solutions to common problems that can be used in mix-and-match
ways.

1.4 Models

Unlike natural languages, programming languages have statements and expressions with
extremely precise interpretations. In order to write Java programs effectively, it is essential
to have a detailed understanding of the structure and meaning of Java programs. Through-
out these notes, we will introduce and emphasize the use of several models that explain
important aspects of the execution of Java programs. These visually-oriented models are
high-level and self-contained; they do not require any understanding of computational hard-
ware.



1.4. MODELS )

In particular, we shall study the following models:

e Syntaz trees represent the abstract tree structure of Java declarations, statements,
and expressions.

e Object diagrams show the state of Java objects at a given instant in time.

e The Java Ezxecution Model (JEM) explains the meaning of statements and expressions,
particularly the meaning of method invocations.

e [nvocation trees summarize the dynamic structure of method invocations in the Java
Execution Model.



