Enumerations and V ectors

CS111 Lecture 18
Thursday, April 6, 2000

Enumeration Contract

A Java Enumeration is an abstract collection of Objects that can be
enumerated one at atime until there are no more:

public interface java.util.Enuneration {

publ i c abstract bool ean hasMoreEl enent s();
Returns true if there are more elementsin this

enumeration, and fal se otherwise.

public abstract Cbject nextEl enent();
Returns the next Object in this enumeration.

(Note: you must cast the result if it should have
amore specific type.)

| nterfaces

In Java, an interfaceisa“pure’ contract that has no
Implementation. A class can only be a subclass of one other
class, but it can implement arbitrarily many interfaces. E.g

public class O deredSet
ext ends Set | npl
| npl enment s Sequence, Set

Listing the WordsinaFile

// An applet that prints out the words of a file in the order of their appearance followed by
// A word count. Punctuation marks are considered to be words.
public class Words extends TextApplet {

public void run Q) {

String filename = WordEnumeration.chooseFilename();
// State variables for iteration

WordEnumeration words = WordEnumeration.fileToWords(filename);
int count = 0;
printInC'Processing file "+ filename + ""\n"");

printInC'Here are the words in the file iIn order of appearance));
printIln("------- - - oo —_————,—————,—, —,—,————)

while (words.hasMoreElements()) {
printIn(words.nextElement());
count = count + 1; // Could also say count++

}
printiIn("--—————--——— - Y);

printInC'The file has "+ count + ' words');

Vectors: What and Why?

In Javaa Vector is an extensible indexed collection of objects.

As with arrays access time to Vector sotsis constant time.

Unlike with arrays, the size of a Vector can change dynamically
as objects are inserted or removed.

Aswith ObjectList, every Vector element must be an Object. This
Implies |ots of casting!

We draw Vector instances just like arrays, except with the title
“Vector” at the top.

Below I1s a contract for a subset of Java' s Vector class.

V ector Contract

Seethe JDK 1.0.2 API for details.

public

{

cl ass

java. util . Vector

/] Constructors
public Vector();

/] 1 nstance Mt hods
public final

publ i
publ i
publ i
publ i
publ i
publ i

C

O O O O O

fi
fi
fi
fi
fi
fi

nal
nal
nal
nal
nal
nal

voi d addEl enment (Qbj ect

obj);

Obj ect elenmentAt(int index);

Enuneration el enents();
voi d i nsert El enent At ((bj
voi d renoveEl enent At (i nt
voi d set El enent At (bj ect
I nt size();

ect obj,
| ndex) ;

obj ,

| nt

i nt 1 ndex);

| ndex) ;

Listing the Distinct Words in aFile

// An applet that prints the number of distinct words in the file,
// followed by a list of distinct words in dictionary order.
public class WordsDistinctSorted extends TextApplet {

public void run Q {
String filename = WordEnumeration.chooseFilename();
printIn('Processing file "+ filename + '"\n"");
// State variables for iteration
WordEnumeration words = WordEnumeration.fileToWords(filename);

Vector set =new Vector(); // set contains sorted sequence of strings seen so far.
.. . Main loop goes here. See next slide . . .

// Print results

printInC'There are ™ + set.size() + " distinct words in the file:);

prinebn¢’'--------- - - ---»-»- - - o \ \}to _— Y';

Enumeration distinct = set.elements();

while (distinct.hasMoreElements()) {
printIn(distinct.nextElement());

s
println¢("-----— - ——_————— Y;

Insertion Loop for Distinct Words Program

// This code belongs in the context of the previous slide.
// Insert all words into the set
while (words.hasMoreElements()) {
String word = (String) words.nextElement();
int 1ndex = StringVectorOps.binarySearchSorted(word, set);
// Only insert word if its not already in set.
1IT ((index == set.si1ze())
Il (! (word.equals(set.elementAt(index))))) {
set.insertElementAt(word, index);

}
}

Linear Search of an Unsorted Vector of Strings

// If x is in vec, returns the least index at which vec appears.
// (There may be more than one.)
// If x is not in vec, returns the index at which x should be inserted.
// Use linear left-to-right search to find the index.
public static int linearSearchUnsorted(Object x, Vector vec) {
for (int 1 = 0; i1 < vec.size(); i++) {
IT (X.equals(vec.elementAt(1))) {/ Cast unnecessary for .equals()
return 1i;

+
}

// Only reach this point if x is not equal to any element in vec,
// in which case insertion point is at end of vec.
return vec.size(Q);

Linear Search of a Sorted Vector of Strings

// Assume that string in vec are sorted from low to high
// according to the string compareTo() method.
// If X is in vec, returns the least index at which x appears.
// (There may be more than one.)
// If x is not in vec, returns the index at which x should be
// inserted in vec in sorted order.
// Use linear left-to-right search to find the index.
public static int linearSearchSorted(String x, Vector vec) {
for (int 1 = 0; 1 < vec.size(); i++) {
1T (X.compareTo((String) vec.elementAt(i)) <= 0) {
return 1;

+
}

// Only reach this point if x is greater than all other elements
// in which case insertion point is at end of vec.
return vec.size(Q);

Binary Search of a Sorted Vector of Strings

// Assume that objects in vec are sorted from low to high
// according to the string compareTo() method.
// If X is in vec, returns an index at which vec appears.
// (There may be more than one.)
// If x is not in vec, returns the index at which x should be
// inserted in vec in sorted order.
// Use binary search to find the index.
public static iInt binarySearch(String x, Vector vec) {
int 1o = O;
int hi = vec.size() - 1;
// Loop invariants:
// * All elements at indices < lo are less than x.
// * All elements at indices > hi are greater than x.
. . . Main loop goes here (see next slide) . . .
// 1o must be hi + 1 at this point.
// By invariants, insertion point must be lo.
return lo;

Binary Search: Main Loop

// This code belongs in the context of the previous slide.
while (Io <= hi) {
int mid = (lo + hi) / 2;
String midElt = (String) vec.elementAt(mid);
Int comp = x.compareTo(midEIt);
iIT (comp == 0) {
return mid;
} else it (comp < 0) {
hi = mid - 1;
} else { // (comp > 0)
lo = mid + 1;

}

