Wellesley College a CS111 Computer Programming and Problem Solving a Fall 1999
FINAL EXAM REVIEW PROBLEMS

The CS111 final exam is a self-scheduled exam held during the normal final exam period. It isan
open book exam: you may refer to any books, notes, and assignments. Y ou may not talk to other
people about the exam, nor may you use a computer during the exam.

Hereisalist of topics covered by the course that may be tested on the final exam:

» problem solving patterns. divide/conquer/glue, recursion, iteration (tail recursion,
loops);

» abstraction: method abstraction, data abstraction, abstraction barriers/contracts/APIs.

* modularity: constructing programs out of mix and match parts (e.g. generators, mappers,
filters, accumulators) that use standard interfaces (lists, trees, arrays).

* language components:. primitives, means of combination, means of abstraction.

e control structures. sequencing, method invocation, conditionals (i f /el se), loops
(whil e, for), return.

» datastructures. objects, lists, binary trees, arrays.

* models: execution diagrams, object diagrams, invocation trees.

» Javamethods: declaration vs. invocation; parameter declaration and use; formal vs.
actual parameters; scope of parameter names; void vs. non-void return types; using
r et ur n to return result; invocation model (create aframe in Java execution model).

» Javaclassdeclarations: instance variables, class (static) variables; constructor methods,
instance methods, class (static) methods; inheritance; abstract classes and methods.

» Java statements: local variable declarations, method invocations, assignments, i f /el se
conditionals, whi | e loops, f or loops, r et ur n; security keywords (publ i c, pr ot ect ed,
private)

» Javaexpressions: literals (numbers, booleans, characters, strings), variable references
(instance variables [e.g., f00.x], array subscripts[e.g., foo[i]], t hi s, super), constructor
method invocations (new), non-voi d method invocations, (arithmetic, relational, logical

* microworlds: BuggleWorld, TurtleWorld, PictureWorld, ListWorld, TreeWorld,
SketchWorld; Java graphics and GUIs.

Below are some problems intended to help you review material for the final exam. The problems
do not cover all of the topics listed above, so you should also review your notes and assignments.

The problems range in difficulty. Some problems are from previous final exams. Others (with
some rewriting) could be turned into reasonable final exam problems. Others are too long or
complex for afinal exam problem, but review material that is covered on the exam.

The problems are not in any particular order, so you should not feel compelled to do them in
order. Rather, you should first work on those problems that cover material in which you think
you need the most practice. To help you decide which problems to work on, each problem lists
the concepts that the problem covers.

As of thiswriting, there are no written solutions to these problems. Y ou are encouraged to talk to
your instructors and your classmates about solutions to these problems. Solutions to some
problems will be presented in review sessions.

Problem 1. Squares (Tests Recursion, Iteration, TurtleWorld, BuggleWorld, PictureWorld,
Graphicsworld)

Below are four parts that implement a similar problem in four different microwolds that we have
studied. In all parts, you should write any auxiliary methods that simplify the definition of the requested
method.

Part a. Write the following instnace method for a Squar eTur t | e subclass of Turt | e:

public void squares (int n, int |en)

Draws n adjacent squares, the first of which has side length | en, and the rest of which have aside
length that is one half the side length of the previous square. After drawing the squares, the position
and heading of the turtle should be the same as it was before drawing the squares. For instance, if
saraisasSquareTurt! e facing EAST, then sar a. squares(5, 240) should draw the following
picture and return sar a to the same position and heading.

B
|< 240 >|< 120 l 60 l 30 |14

Part b. Write an instance method for a Squar eBuggl e subclass as Buggl e that has the same
interface asthe squar es() method from Part ain which each square of side length | en isdrawn asa
| en by I en filled square of bagels.

Part c. Write the following Pi ct ur evor | d method:

public Picture squares (int n, Color cl, Color c2)

Returns a picture with n adjacent squares sitting at the bottom of the frame. The leftmost
square should fill the lower left quadrant of the frame. Each subsequent square should be
one-half the size of the square to its left. The colors of the squares should alternate between
c1 and c2 from left to right. Assumethat public Picture patch (Color c) returnsa
rectangular picture with color c that fills whole frame.

Part d. Write the following instance method squares() for a Squar eCanvas subclass of Canvas.

public Picture squares (Graphics g, int n, int len, Color cl1, Color c2)
Drawsin this canvas a picture with n adjacent colored squares as shown below. The leftmost
square has side length | en and an upper left corner at (0,0). Each successive square has aside
length that is half the side length of the square to its left. The colors of the squares should
alternate between c1 and c2 from left to right.

(0.0

Problem 2: Greatest Common Divisor (Tests Iteration)

Wyla Lupe has been experimenting with ways to calculate the gr eatest common divisor (GCD)
of two integers. The GCD of two integers A and B isthe largest integer that evenly dividesinto
both A and B. For example, the GCD of 30 and 18 is 6, the GCD of 28 and 16 is 4, and the GCD
of 17and 11is1.

A clever agorithm for computing GCDs was developed by Euclid in 300 B.C. (In fact, itis
considered by many to be the oldest non-trivial algorithm!) Wyla has expressed Euclid's
algorithm in Java as the following tail recursive GCDTai I method. (You do not have to
understand why the agorithm works!)

public static int GCDTail (int A int B) {
if (B==20) {
return A
} else {
return GCDTail (B, A % B)
}
}

Recall that A % B (pronounced "A mod B") calculates the remainder of A divided by B. For
example, 1098 is1, 10%t is2, 109 iS0, and 10% iS 4.

Part a In the following table, show the sequence of values that the parameters A and B takeon in
the iterative calculation of GCDTai | (95, 60) . Important: Y ou have been provided with more
rows than you need, so some rows should remain empty when you are done.

A B

Part b . In the following GCDWhi | e code skeleton, implement an alternative version of Euclid's
GCD algorithm that uses awhi | e loop to express the same iteration that is expressed by Wyla's
GCDTai | method. Y ou may wish to introduce one or more local variables.

public static int GCDWiile (int A int B) {
// Flesh out this skeleton

Part c. Would it be easy to re-express Wyla's GCDTai | program asaf or loop? Briefly explain your
answer.

Problem 3: Array Reversal (Tests Arrays, Iteration)
Part a. Implement the following copyRever se() method on integer arrays:

public static int [] copyReverse (int [] a);
Returns anew array that has the same length as a and al the elements of a in reverse order.

For example, suppose that p is the following array:

p—.j_? -3 |42 |11 |14

Then executing the statement
int [1] q = copyReverse (p)

givesrise to the following diagram:

p | —1®[17] [-3] [a2] [11] [14

0O 1 2 3 4
a| 1% [1a] [11] [42 -3 |17

Part b. Implement the following r ever se() method on integer arrays.
public static void reverse (int [] a);
Modifies a so that its elements are in the reverse of their original order. Y ou should not create
any intermediate arrays.

For example, suppose that p isthe following array:

r—.17_3421114

Then executing the statement
reverse (r)

changes the diagram to be:

Problem 4: Inversions (Tests Arrays, Iteration, Lists)

In an integer array A, an inversion is defined to be apair of indices (i, j) suchthat i <j and A[i] > A[j].
For instance, the following array s hasfive inversions: (0, 1), (0, 4), (2, 3), (2, 4), and (3, 4).

O 1 2 3 4
S——>36 17| |51 [42] |23

Part a. Implement the following method:

public static int countlnversions (int [] a);
Returns the number of inversionsin a.

For instance, count | nver si ons(s) should return 5.

Part b. Implement the following method:
public static ObjectList listlnversions (int [] a);
Returnsalist of al theinversionsin a. Each inversion (i, |) should be represented as a Point
instance whose x field isi and y field isj. The order of inversionsin theresulting list is
immaterial.

For instance, Syst em out . println(listlnversions(s)) might (among many possible orderings)
display:

[java. awt . Poi nt [x=3, y=4], java.aw . Point[x=2,y=4], java.awt.Point[x=2,y=3],
j ava. awt . Poi nt [x=0, y=4], j ava. awt . Poi nt [x=0, y=1]]

Problem 5: Inheritance (Tests Inheritance)

Consider the following five simple classes

class A {
public int mi() {return 1;}
public int nm2() {return nB();}
public int n8() {return 2;}
}
class B extends A { class D extends A {
public int mi() {return n2();} public int ml() {return super.n2();}
public int nB() {return 3;} public int nB() {return 5;}
) }
class C extends B { class E extends D {
public int n2() {return 4;} public int n2() {return 6;}
} }

What is printed in the st dout window when the following statements are executed?

Systemout.println((new A()).mL())
Systemout.println((new B()).m());
Systemout.println((new C()).ml());
Systemout.printin((new D()).mL());
Systemout.printin((new E()).mL())

Problem 6: Converting Betweeen Different Formsof Iteration (Tests Lists, Arrays, Iteration)

We saw in class that iterations could be expressed as tail recursions, whi | e loops, and f or loops. Each
of the following parts contains a method that uses one of these forms of iteration. For each part, write
two equivalent methods that use the other two forms of iteration.

Part a.
public static int weightedSum (IntList L) {
return wei ghtedSunmrail (L, 1, 0);

}

public static int weightedSunfTail (IntList L, int index, int total) ({

if (isEmpty(L)) {
return total;

} else {
return wei ghtedSunirail (tail (L), index + 1, (index*head(L)) + total);
}
}
Part b.
public static int isMenber (int n, int [] a) {
int i =a.length - 1;
while ((i >= 0) & (a[i] !'=n)) {
i =i - 1;
}
return (i >= 0); // Will only be true if n is In a.
}
Part c.

public static void partialSum(int [] a) {
int sum = O;

for (int i =0; i < a.length; i++) {
sum = sum + afi];
a[i] = sum

Part d.
public static void squiggle (Gaphics g, int x1, int y1, int x2, int y2) {
if ((x2>0) || (y1>0) [[] (x2>0) [] (y2>0)) {
g.drawLi ne(x1, yl1, x2, y2);
squiggle(g, x2, y2, yl/4, x1*2);

Problem 7: Converting Betweeen Arraysand Lists (Tests Lists, Arrays, Iteration)
Implement the following two methods for converting between lists and arrays of integers.

public static int [] listToArray (IntList L);
Returns an array of integers whose length is the same as the length of L and whose elements,

from low to high index, arein the same order as the elementsof L.

public static IntList arrayToList (int [] a);
Returns alist of integers whose length is the same as the length of aand whose elements arein

the same order as the elements of a (from low to high index).

Problem 8: Iterative List Reversal (Tests Invocation Trees, Recursion, Iteration, Lists,)
In class we studied the following recursive method for reversing alist:

public static IntList reverse (IntList L) {
if (isEnpty(L)) {
return enpty();
} else {

return postpend(reverse(tail (L)), head(L));

}
}

public static IntList postpend (IntList L, int n) {
if (isEmpty(L)) {
return prepend(n, enpty());
} else {
return prepend(head(L), postpend(tail (L), n));
}
}

Thisisnot an efficient way to reverse alist. Each call to postpend() creates anew list whose length is
one more than the length of its first argument. Furthermore, postpend() is called once for each element in
the list being reversed. As a consequence, lots of intermediate list nodes are created that do not appear in
the final result.

Part a. Assume that A isthe list whose printed representationis| 1, 2, 3, 4] . Assuming that r ever se()
isimplemented as shown above, draw an invocation treeand object diagram (i.e. box-and-pointer list
representations) for the invocation r ever se(A) . Your tree should have one node for each call to

rever se() and one node for each call to post pend() .

Follow the conventions used in Problem 1 of Exam 2 for drawing invocation trees and object diagrams.
That is, your nodes should have the form

reverse(ListArgument) : ListResult
post pend(ListArgument IntegerArgument): ListResult

where IntegerArgument is an integer, and ListArgument and ListResult are referencesto list nodes
that appear in your object diagram.

Part b. An aternative technique for reversing alist is to follow the strategy one would use in reversing
apileof cards: form anew pile by iteratively removing the top card of the original pile and putting it on
the new pile. When there are no more cards in the original pile, the new pile contains the cardsin reverse
order from the original pile.

Based on thisidea, here is atable corresponding to an iterative reversal of thelist[1, 2, 3, 4] :

list resul t
[1, 2, 3, 4] [1
[2, 3, 4] [1]
[3, 4] [2, 1]
[4] [3, 2, 1]
[1 [4, 3, 2, 1]

Implement thisiterative list reversal strategy inar ever se() method in three ways: (1) using an
auxiliary tail recursiver ever seTai | () method to implement the iteration; (2) using awhi | e loop to
implement the iteration; and (3) using af or loop to implement the iteration.

8

Problem 9: List Partitioning (Tests Lists, Iteration)

Thefollowing partiti on() method takes an integer named pivot and alist of integers named L and
partitions the list into two lists:

(1) All the elementsin L less than pivot.
(2) All the elementsin L greater than or equal to pivot.

The two resulting lists are returned as the components of an array with two slots, which is constructed by
the auxiliary t woLi st s() method. All I nt Li st operations are prefixed with "I L. ".

public IntList [] partition (int pivot, IntList L) {
return partitionTail (pivot, L, IL.empty(), IL.enpty());
}

public static IntList [] partitionTail (int pivot, IntList list,
IntList |esses, IntList greaters) {
if (IL.isEnpty(list)) {

return twolLists(l esses, greaters);
} else if (IL.head(list) < pivot)
return partitionTail (pivot, IL.tail(list),
I L. prepend(lL.head(list), |lesses), greaters);
} else {
return partitionTail (pivot, IL.tail(list),
| esses, IL.prepend(lL.head(list), greaters));
}

}

// Auxiliary method used by partition()
public static IntList [] twolLists (IntList L1, IntList L2) {
IntList [] result = new IntList [2];
result[0] = L1;
result[1] = L2;
return result;

}

Part a. ThepartitionTail () methodisatail recursive method that specifies an iteration in four state
variables named pi vot , | i st, | esses, and gr eat er s. Any iteration can be characterized by how the
values of the state variables change over time. Below is a table with four columns, one for each state
variable of the iteration described by partiti onTai | (). Each row represents the values of the
parameters to a particular invocation of partitionTail ().

Suppose that the list A has the printed representation [7, 2, 3, 5, 8, 6] . Fill in the following table to show
the parameters passed to successive callstoparti ti onTai | () inthe computation that begins with the
invocation partition(5, A).You havebeen provided with more rows than you need, so some row(s)
should remain empty when you are done:

pi vot list | esses greaters

Part b. Itispossibleto express any iteration as awhi | e loop. Flesh out the following code skeleton of a
partitionWwil e() method that behavesjust like the abovepartiti on() method except that it uses a
whi | e loop rather than tail recursion to expressthe iteration of partitionTail (). Your

partitionwhil e() method should not call any auxiliary methods other than t woLi st s() and the

I ntLi st operations.

public static IntList [] partitionwile (int pivot, IntList L) {

}

Part c. Intheabovepartition() method, elementsin the two returned lists are in arelative order
opposite to their relative order in the original lists. For instance, partitioning thelist[1, 4, 8, 3, 6,
7, 5, 2] aboutthepivot 6 yieldsthelists[2, 5, 3, 4, 1] and[7, 6, 8].

Suppose that we want the resulting lists to have the same relative order asin the original list. If we are
provided with alist reversal method r ever se() , we can easily accomplish this by reversing the two lists
before putting them into the result array. That is, we can change the line

return twolLists(l esses, greaters);
withinpartitionTail () tobe
return twoLi sts(reverse(lesses), reverse(greaters));

An aternativeto using r ever se() to get this behavior istowritepartition() asanon-tail recursive
method. Flesh out the following skeleton of partiti onNot Tai | () which partitions the elements of alist
about the pivot but maintains the relative order of the elementsin the resulting lists:

public static IntList [] partitionNonTail (int pivot, IntList L) {
if (IL.isEmpty(L)) {
return twoLists(lL.enpty(), IL.empty());
} else {
IntList [] subresult = partitionNonTail (pivot, IL.tail(L));
// flesh out the missing code here ..
}

}

Part d. Animportant use of thepartition() method isasorting algorithm known as quicksort. Here
is the idea behind quicksort:

To sort the elements of alist, partition the elements of thetail of thelist around its
head into result lists that we'll call lesses and greaters. Then result of sorting the
whole list can be obtained by appending the result of sorting lesses to the result of
prepending the head of the list to the result of sorting greaters.

For example, if theinitial listis[5, 2, 8, 3, 6, 7, 1, 4],then partitioningthetail of thelist around
the head (5) yields:

lesses = [4, 1, 3, 2]
greaters = [7, 6, 8]

By wishful thinking, sorting lesseswill yield[1, 2, 3, 4] and sorting greaterswill yield[6, 7, 8].
The result of sorting the original list isthe result of appending[1, 2, 3, 4] totheresult of prepending
5to[e, 7, 8].

Flesh out amethod public static IntList quicksort (IntList L) thatusesthisideato sortthe
elements of alist. You may usel LO. append() to append two lists.

10

Problem 10: Sales Statistics (Tests Data Abstraction, Arrays, Lists, Objects, Object Diagrams)

The management of the Decelerate Clothing Store (specializing in "clothes that slow you down™) wants
to track certain statistics about customer purchases. In particular, they want to track the amount of each
purchase and whether it was made with cash or credit card. Later, they want to be able to calculate
statistics based on this information, such as the largest cash purchase amount, the average amount of a
credit card purchase, and the percentage of credit card purchases.

The management has hired Abby Stracksen of Simplistic Statistics to implement a Java program for
tracking the purchase information and calculating the desired statistics. Abby begins by designing a
contract for aHi st ory classthat maintains a history of customer purchase:

Contract for the History Class
Constructor method for the History class

public History (int maxEntries);)
Returns anew Hi st or y object that can store up to maxEnt ri es purchase entries.

Instance methods for the History class

public void add (int anmount, bool ean cash);

Adds a new purchase entry to this history: amount is the amount of the purchase;
cash valuet rue indicates a cash purchase, cash valuef al se indicates a credit card
purchase. An attempt to add an entry isignored if maxEnt ri es entries have been
stored.

public int size (); o o
Returns the number of entriesin this history.

public int mn (boolean cash);))

Returns the minimum amount of a purchase made with the given cash value.

(I.e. if cash istrue, return the minimum purchase made with cash, otherwise return
the

minimum purchase made with credit card).

public int nmax (bool ean cash); . .
Returns the maximum amount of a purchase made with the given cash value.

public int average (bool ean cash);])
Returns the average amount of a purchase made with the given cash value.

public int nunber (boolean cash); _
Returns the number of purchases made with the given cash value.

public int percentageByNunber (bool ean cash); _ _
Returns the percentage (by number of purchases) of purchases made with the given
cash value.

public int percentageByAnmount (bool ean cash);))
Returns the percentage (by total amount) of purchases made with the given cash
value.

11

Abby has also defined the contract for aPur chase class that models an individual purchase:
Contract for the Purchase class:
Constructor method for the Purchase class

public Purchase (int anmount, bool ean cash);

Returns a new Pur chase object that with amount anount and cash/credit mode cash. A
cash valuetrueindicates a cash purchase, cash value false indicates a credit card
purchase.

Instance methods for the Purchase class

public int getAnmount ();
Returns the amount of this purchase.

public void set Anount (int newAnount);
Sets the amount of this purchase to be newAmount .

public bool ean getCash ();
Returns the cash/credit mode of this purchase.

public void setCash (bool ean newCash);
Set the cash/credit mode of this purchase to be newCash.

Abby's co-worker Emil P. Mentor has begun to implement Abby's contract. Hereis his
implementation of the Purchase class:

public class Purchase {

// Instance Variables
private int anount;
privat e bool ean cash;

// Constructor Method

public Purchase (int i, boolean b) {
ampunt = i;
cash = b;

}

// Instance Methods
public int getAnount () {
return anount;

}

public void set Amount (int newAnount) {
amount = newAnount ;

}

publ i c bool ean get Cash () {
return cash;

}

public void setCash (bool ean newCash) {
cash = newCash;
}
}

12

Emil also started to implement the Hi st or y class, but was called away on abusinesstrip. Here's
how far he got:

public class History {

// Instance Variables:
private Purchase [] purchases;
private int size;

/] Constructor Method:

public Hi story (int maxEntries) {
pur chases = new Purchase[maxEntri es];
size = 0;

}

// Instance Methods:
public void add (int amount, bool ean cash) {
if (size < purchases.length) {
pur chases[si ze] = new Purchase(anount, cash);
size = size + 1,
}
}

// 1 still need to finish the other methods! - Emil -

Part a. Based on Emil'simplementation, draw an object diagram that shows the result of
executing the following statements. Y our diagram should include the local variable h and all
objects that are accessible from h via some sequence of pointers.

Hi story h = new Hi story(5);
h. add(82, false);

h. add(53, true);

h. add(178, false);

Part b. Finish Emil'simplementation by fleshing out the missing instance methods from his
Hi st ory class.

Part c. Your colleague Bud Lojack believes that Emil could have written the constructor method
for Pur chase as:

public Purchase (int anmount, bool ean cash) {
anmpunt = anount;
cash = cash;

}
Is Bud right? Explain.

Part d. On hisdesk, Emil left the following notes about aternative implementations of the
Purchase class:

Many ways to implement Purchase instance. E.g.

1) Asan array of two integers. Slot 0 = amount; Slot 1 = cash (use O for f al se, 1 for t r ue).
2) Asaninteger list with two elements. First element = amount; second = cash.

3) Asasingle positive/negative integer. Amount is the absolute value. Positive indicates
cash; negative indicates credit.

4) Asasingle positiveinteger n. Amount =n/ 2; cash=n % 2, whereOisfalse, 1istrue.

13

Based on Emil's notes, provide four aternative implementations of the Pur chase classthat al
satisfy the Pur chase contract.

Part e. Bud Lojack thinks that Emil should have made the anount and cash instance variables of
the Pur chase classpubl i ¢ rather than pri vat e. Explainto Bud why thisisabad idea.

Part f. Emil returns from his trip, and says that he had an epiphany about an alternative
representation of Hi st or y instances that does not involve Pur chase objects. Instead, Emil thinks
a history instance can be implemented as an object with three instance variables:

1. ThemaxEntri es integer.
2. Aninteger list cashes holding the amounts of the cash purchases.
3. Aninteger list cr edi t s holding the amounts of the credit purchases.

Write an alternative implementation of the Hi st or y class based on this representation.

Problem 11: Leftist Turtles (Tests Instance Variables, Class Declarations, Inheritance)

Supposewe want aLefti st Turt | e subclass of Turt | e that remembers the number of times that it has been
invoked withthel t () method. A Lefti st Turt| e hasthe same contract asTurt | e except that it also
understands the following additional instance method:

public int numberOfLefts ();))
Returns the number of timesthat thel t () method has been invoked on this turtle.

Part a. Write a complete class declaration for LeftistTurtle implementing the LeftistTurtle contract.
Part b. Consider the following test of the LeftistTurtle class:

LefistTurtle leo = new LeftistTurtle();
[eo. 1t (45);
[eo.rt(30);
System out. println(leo.nunber O Lefts());

Y ou might expect that executing the above statements should print 1, but, depending on the implementation of
thert () methodinTurtl e, it mightinfact print 2. Explain how this could happen. (Hint: study the
implementation of the Text Turt | e discussed in class.)

Part c. Suppose that Turtle isimplemented in such away that the test code in Part b returns 2. Modify your
implementation of Lefti st Turt | e S0 that numberOfL efts() returns only the number of 1t() method calls and
does not count the number of rt() method calls. Y ou should only change Lef ti st Turt | e; you should not
change Turt| e!

14

Problem 12: Bank Accounts (Tests Data Abstraction, Lists)

Suppose that there is a Java class Account that represents bank accounts. A straightforward way to
represent a simple bank account is to keep track of three integer instance variables representing,
respectively, the savings account balance, the checking account balance and the total amount of money
in the bank (equal to the sum of the savings and checking account balances). Assume further that the
constructor method for the class Account has zero parameters. With this straightforward approach, the
constructor method is

public Account () {
this.savings = 0;
this.checking = 0;
this.total = 0;

}
resulting in the following object diagram representation:
Account
savi ngs 0

checki ng 0

t ot al 0

Below is aJava class that implements this straightforward representation.

i mport java.awt.*;
i mport java.applet.*;

cl ass Account {

private int savings;
private int checking;
private int total;

public account () {
this.savings = 0;
this.checking = 0;
this.total = 0;

}

public int getSavings() {
return this. savings;

}

public int getChecking() {
return this. checking;

}

public int getTotal () {
return this.total

}

public void depositToSavi ngs(i nt ampunt ToAdd) {
this.savings = this.savings + anmpunt ToAdd;
this.total = this.total + anpuntToAdd;

}
15

public void transferFronBSavi ngsToChecki ng(i nt transferAmount) {
this.savings = this.savings - transferAnmount;
t hi s. checki ng = this.checking + transferAnount;

public void wi thdrawFronChecki ng(int w t hdrawal Amount) {
this.checking = this.checking - w thdrawal Amount;
this.total = this.total - withdrawal Anount;

}
}

Part a. An aternative representation for bank accountsis to keep track of only two integer instance
variables representing, respectively, the savings account balance and the total amount of money in the
bank (equal to the sum of the savings and checking account balances). This approach resultsin the
following object diagram representation:

Account
savi ngs 0
— ppf| total 0

Write an implementation of the Account classthat uses this alternative representation. It isimportant to
note that it is only the internal representation of the bank account that has changed. The external
interface to the bank account itself remains the same. Additionally, every instance method should
behave the same as previoudly.

Part b. Yet another representation for bank accountsisto use only one instance variable: an integer
linked list that has three elements. The elements store, respectively, the savings account balance, the
checking account balance and the total amount of money in the bank (equal to the sum of the savings
and checking account balances). The resulting object diagram representation is:

Account

accountinfo

» 0| 0| —» 0| —>e

F 3

thiselement stores this element stores this element stores
the savings account the checking the total of the
balance account balance account balances

Write an implementation of the Account classthat uses this representation. Asin Part aof this
problem, it isimportant to note that it is only the internal representation of the bank account that
has changed. The external interface to the bank account remains the same. Additionaly, every
instance method should behave the same as previously.

Your solution will usethe nt Li st class discussed in class to represent an integer linked list.
When writing your code, you may assume, that | nt Li st . head() may be abbreviated by head()
and similarly for the other I nt Li st methods.

16

Problem 13: Number Pad (Tests GUI layout, GUI behavior)
Implement a Java applet Nunber PadAppl et that has the following layout and behavior:

Layout: The applet should consist of atext field "screen” (6 characters wide, initially containing the
number 0) and twelve buttons, as shown below. Note that by default, the contents of atext field are |eft
justified. Do not worry about colors, fonts, etc., when specifying the layout.

HEEB
EE Buttons
e

Behavior: The applet should have the following behavior:

Screen

* Pressing adigit button should have the effect of extending the number in the screen with that digit as
anew last digit. Thisbehavior isthe one you expect in calculators, ATM machines, etc. Some
special cases:

(2) If the screen currently shows O then the pressed digit should replace O.
(2) If the screen currently shows a number with 6 digits, pressing a digit should have no effect.

* Pressing the CLR button should erase any number in the screen and replaceit by O.

» Pressing the DEL button should delete the least significant digit of the currently displayed number.
E.qg., if the screen shows 427, then after pressing DEL, the screen should show 42. If the screen
shows only asingle digit, then pressing DEL makes it show 0.

17

Problem 14: Whatl zzit (Tests GUI layout, GUI behavior,)

Below isthe declaration for asimple Wat | zzi t applet. Study the code and answer the following:

Part a. Draw apicture of the applet asit would look when first created by the AppletViewer.

Part b. Describe how the state of the applet would change in response to each button pressin
the following sequence of button presses: A, B, A, B, C, C.

i mport java.awt.*; // Allows using AWT Component classes
i mport java.applet.*; // Allows using applets

publ

ic class Whatlzzit extends Applet {

private static String [] buttonNanes = {"A", "B", "C'};
private TextField [] boxes = new TextField[2];

public void init () {

}

this. setLayout (new GridLayout(3,1));

t hi s. add(nakeBox(0));

t hi s. add(nakeBut t onPanel (butt onNanes)) ;
t hi s. add(nakeBox(1));

private TextField nakeBox (int index) {

}
pr

}

TextField box = new TextField("1");
boxes[i ndex] = box;
return box;

i vate Panel makeButtonPanel (String [] nanes) {
Panel buttonPanel = new Panel ();
but t onPanel . set Layout (new Gri dLayout (1, names.|ength));
for (int i =0; i < nanes.length; i++) {
but t onPanel . add(new Button(nanes[i]));
}

return buttonPanel

public bool ean action (Event evt, bject arg) {

}
pr
}
pr
H}

if (arg.equals("A"))

boxes[1] . set Text (add(boxes[0] . get Text (), boxes[1].getText()));
} else if (arg.equals("B")) {

String text0 = boxes[0]. get Text();

boxes[0] . set Text (boxes[1].get Text());

boxes[1] . set Text (text0);
} else if (arg.equals("C')) {

boxes[0] . set Text (mul (boxes[0] . get Text (), boxes[1].getText()));

} else {

return super.action(evt, arg);
}

return true;

ivate String add (String digsl, String digs2) {
return Integer.toString(lnteger. parselnt(digsl) + Integer.parselnt(digs2));

ivate String mul (String digsl, String digs2) {
return Integer.toString(lnteger.parselnt(digsl) * |Integer.parselnt(digs2));

18

